9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A novel mammalian receptor for the evolutionarily conserved type II GnRH

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mammalian gonadotropin-releasing hormone (GnRH I: pGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH2) stimulates pituitary gonadotropin secretion, which in turn stimulates the gonads. Whereas a hypothalamic form of GnRH of variable structure (designated type I) had been shown to regulate reproduction through a cognate type I receptor, it has recently become evident that most vertebrates have one or two other forms of GnRH. One of these, designated type II GnRH (GnRH II: pGlu-His-Ser-His-Gly-Trp-Tyr-Pro-Gly-NH2), is conserved from fish to man and is widely distributed in the brain, suggesting important neuromodulatory functions such as regulating K+ channels and stimulating sexual arousal. We now report the cloning of a type II GnRH receptor from marmoset cDNA. The receptor has only 41% identity with the type I receptor and, unlike the type I receptor, has a carboxyl-terminal tail. The receptor is highly selective for GnRH II. As with the type I receptor, it couples to G(alpha)q/11 and also activates extracellular signal-regulated kinase (ERK1/2) but differs in activating p38 mitogen activated protein (MAP) kinase. The type II receptor is more widely distributed than the type I receptor and is expressed throughout the brain, including areas associated with sexual arousal, and in diverse non-neural and reproductive tissues, suggesting a variety of functions. Surprisingly, the type II receptor is expressed in the majority of gonadotropes. The presence of two GnRH receptors in gonadotropes, together with the differences in their signaling, suggests different roles in gonadotrope functioning.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: not found
          • Article: not found

          Gonadotropin-releasing hormone and its analogues.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gonadotropin-releasing hormone and its analogs.

            GnRH and its analogues have led to exciting new avenues of therapy in virtually every subspecialty of internal medicine as well as in gynecology, pediatrics, and urology. Since their discovery in 1971, it has been demonstrated that GnRH and its analogues enable medical professionals to influence the hypothalamic-pituitary-gonadal axis in two distinct classes of therapeutic applications. The first provides natural sequence GnRH in a pulsatile fashion via portable infusion pumps to mimic the normal physiology of hypothalamic GnRH secretion and restores reproductive potential to infertile men and women with disorders of endogenous GnRH secretion. The second mode uses long-acting GnRH agonists administered in a depot delivery to produce a paradoxical desensitization of pituitary gonadotropin secretion which, in turn, results in a complete ablation of the reproductive axis. This biochemical castration induced by GnRH agonist administration is a safe, effective, complete, and reversible method of removing the overlay of gonadal steroids from a variety of diseases which they are known to exacerbate. These diseases include endometriosis and uterine fibroids in women, prostate cancer in men, and precocious puberty in both sexes. This review examines the physiologic and pharmacologic principles underlying the advances produced by these agents, the mechanism of action of GnRH and its analogues at the cellular level, and the individual therapeutic applications to which these analogues have been applied. Because virtually every subspecialty of medicine will be touched by the GnRH analogues, this review provides an overview and background of their use.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The beta(2)-adrenergic receptor mediates extracellular signal-regulated kinase activation via assembly of a multi-receptor complex with the epidermal growth factor receptor.

              Many G protein-coupled receptors (GPCRs) activate MAP kinases by stimulating tyrosine kinase signaling cascades. In some systems, GPCRs stimulate tyrosine phosphorylation by inducing the "transactivation" of a receptor tyrosine kinase (RTK). The mechanisms underlying GPCR-induced RTK transactivation have not been clearly defined. Here we report that GPCR activation mimics growth factor-mediated stimulation of the epidermal growth factor receptor (EGFR) with respect to many facets of RTK function. beta(2)-Adrenergic receptor (beta(2)AR) stimulation of COS-7 cells induces EGFR dimerization, tyrosine autophosphorylation, and EGFR internalization. Coincident with EGFR transactivation, isoproterenol exposure induces the formation of a multireceptor complex containing both the beta(2)AR and the "transactivated" EGFR. beta(2)AR-mediated EGFR phosphorylation and subsequent beta(2)AR stimulation of extracellular signal-regulated kinase (ERK) 1/2 are sensitive to selective inhibitors of both EGFR and Src kinases, indicating that both kinases are required for EGFR transactivation. beta(2)AR-dependent signaling to ERK1/2, like direct EGF stimulation of ERK1/2 activity, is sensitive to inhibitors of clathrin-mediated endocytosis, suggesting that signaling downstream of both the EGF-activated and the GPCR-transactivated EGFRs requires a productive engagement of the complex with the cellular endocytic machinery. Thus, RTK transactivation is revealed to be a process involving both association of receptors of distinct classes and the interaction of the transactivated RTK with the cells endocytic machinery.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                August 14 2001
                August 07 2001
                August 14 2001
                : 98
                : 17
                : 9636-9641
                Article
                10.1073/pnas.141048498
                55504
                11493674
                23b79ac2-6d96-4b3d-939b-92fa8afde5d4
                © 2001
                History

                Comments

                Comment on this article