41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Infectiousness of pigs infected by the Porcine Reproductive and Respiratory Syndrome virus (PRRSV) is time-dependent

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The time-dependent transmission rate of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) and the correlation between infectiousness, virological parameters and antibody responses of the infected pigs were studied in experimental conditions. Seven successive transmission trials involving a total of 77 specific pathogen-free piglets were carried out from 7 to 63 days post-inoculation (dpi). A semi-quantitative real time RT-PCR was developed to assess the evolution of the viral genome load in blood and nasal swabs from inoculated and contact pigs, with time. Virus genome in blood was detectable in inoculated pigs from 7 to 77 dpi, whereas viral genome shedding was detectable from nasal swabs from 2 to 48 dpi. The infectiousness of inoculated pigs, assessed from the frequency of occurrence of infected pigs in susceptible groups in each contact trial, increased from 7 to 14 dpi and then decreased slowly until 42 dpi (3, 7, 2, 1 and 0 pigs infected at 7, 14, 21, 28 and 42 dpi, respectively). These data were used to model the time-dependent infectiousness by a lognormal-like function with a latency period of 1 day and led to an estimated basic reproduction ratio, R 0 of 2.6 [1.8, 3.3]. The evolution of infectiousness was mainly correlated with the time-course of viral genome load in the blood whereas the decrease of infectiousness was strongly related to the increase in total antibodies.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: not found
          • Article: not found

          Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche

          G. Kärber (1931)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR

            Background Real-time quantitative PCR (qPCR) is a method for rapid and reliable quantification of mRNA transcription. Internal standards such as reference genes are used to normalise mRNA levels between different samples for an exact comparison of mRNA transcription level. Selection of high quality reference genes is of crucial importance for the interpretation of data generated by real-time qPCR. Results In this study nine commonly used reference genes were investigated in 17 different pig tissues using real-time qPCR with SYBR green. The genes included beta-actin (ACTB), beta-2-microglobulin (B2M), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), hydroxymethylbilane synthase (HMBS), hypoxanthine phosphoribosyltransferase 1 (HPRT1), ribosomal protein L4 (RPL4), succinate dehydrogenase complex subunit A (SDHA), TATA box binding protein (TPB)and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta polypeptide (YWHAZ). The stability of these reference genes in different pig tissues was investigated using the geNorm application. The range of expression stability in the genes analysed was (from the most stable to the least stable): ACTB/RPL4, TBP, HPRT, HMBS, YWHAZ, SDHA, B2M and GAPDH. Conclusion Expression stability varies greatly between genes. ACTB, RPL4, TPB and HPRT1 were found to have the highest stability across tissues. Based on both expression stability and expression level, our data suggest that ACTB and RPL4 are good reference genes for high abundant transcripts while TPB and HPRT1 are good reference genes for low abundant transcripts in expression studies across different pig tissues.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A note on generation times in epidemic models.

              The time between the infection of a primary case and one of its secondary cases is called a generation time. The distribution (and mean) of the generation times is derived for a rather general class of epidemic models. The relation to assumptions on distributions of latency times and infectious times or more generally on random time varying infectiousness, is investigated. Serial times, defined as the times between occurrence of observable events in the progress of an infectious disease (e.g., the onset of clinical symptoms), are also considered.
                Bookmark

                Author and article information

                Contributors
                Journal
                Vet Res
                Vet. Res
                Veterinary Research
                BioMed Central
                0928-4249
                1297-9716
                2012
                12 October 2012
                : 43
                : 1
                : 69
                Affiliations
                [1 ]Anses – laboratoire de Ploufragan-Plouzané, BP53, 22440, Ploufragan, France
                [2 ]UMR BioEpAR, Oniris, INRA, LUNAM, BP 40706, 44307, Nantes Cedex 03, France
                Article
                1297-9716-43-69
                10.1186/1297-9716-43-69
                3497607
                23061672
                23ba5dbb-1847-4066-ba9a-b9b702d3e459
                Copyright ©2012 Charpin et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 13 April 2012
                : 4 September 2012
                Categories
                Research

                Veterinary medicine
                Veterinary medicine

                Comments

                Comment on this article