30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Telomere Lengths, Pulmonary Fibrosis and Telomerase ( TERT) Mutations

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Telomerase is an enzyme that catalyzes the addition of nucleotides on the ends of chromosomes. Rare loss of function mutations in the gene that encodes the protein component of telomerase ( TERT) have been described in patients with idiopathic pulmonary fibrosis (IPF). Here we examine the telomere lengths and pulmonary fibrosis phenotype seen in multiple kindreds with heterozygous TERT mutations.

          Methods and Findings

          We have identified 134 individuals with heterozygous TERT mutations from 21 unrelated families. Available medical records, surgical lung biopsies and radiographs were evaluated retrospectively. Genomic DNA isolated from circulating leukocytes has been used to measure telomere lengths with a quantitative PCR assay. We find that telomere lengths of TERT mutation carriers decrease in an age-dependent manner and show progressive shortening with successive generations of mutation inheritance. Family members without TERT mutations have a shorter mean telomere length than normal, demonstrating epigenetic inheritance of shortened telomere lengths in the absence of an inherited TERT mutation. Pulmonary fibrosis is an age-dependent phenotype not seen in mutation carriers less than 40 years of age but found in 60% of men 60 years or older; its development is associated with environmental exposures including cigarette smoking. A radiographic CT pattern of usual interstitial pneumonia (UIP), which is consistent with a diagnosis of IPF, is seen in 74% of cases and a pathologic pattern of UIP is seen in 86% of surgical lung biopsies. Pulmonary fibrosis associated with TERT mutations is progressive and lethal with a mean survival of 3 years after diagnosis. Overall, TERT mutation carriers demonstrate reduced life expectancy, with a mean age of death of 58 and 67 years for males and females, respectively.

          Conclusions

          A subset of pulmonary fibrosis, like dyskeratosis congenita, bone marrow failure, and liver disease, represents a “telomeropathy” caused by germline mutations in telomerase and characterized by short telomere lengths. Family members within kindreds who do not inherit the TERT mutation have shorter telomere lengths than controls, demonstrating epigenetic inheritance of a shortened parental telomere length set-point.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of a specific telomere terminal transferase activity in Tetrahymena extracts.

          We have found a novel activity in Tetrahymena cell free extracts that adds tandem TTGGGG repeats onto synthetic telomere primers. The single-stranded DNA oligonucleotides (TTGGGG)4 and TGTGTGGGTGTGTGGGTGTGTGGG, consisting of the Tetrahymena and yeast telomeric sequences respectively, each functioned as primers for elongation, while (CCCCAA)4 and two nontelomeric sequence DNA oligomers did not. Efficient synthesis of the TTGGGG repeats depended only on addition of micromolar concentrations of oligomer primer, dGTP, and dTTP to the extract. The activity was sensitive to heat and proteinase K treatment. The repeat addition was independent of both endogenous Tetrahymena DNA and the endogenous alpha-type DNA polymerase; and a greater elongation activity was present during macronuclear development, when a large number of telomeres are formed and replicated, than during vegetative cell growth. We propose that the novel telomere terminal transferase is involved in the addition of telomeric repeats necessary for the replication of chromosome ends in eukaryotes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Telomerase mutations in families with idiopathic pulmonary fibrosis.

            Idiopathic pulmonary fibrosis is progressive and often fatal; causes of familial clustering of the disease are unknown. Germ-line mutations in the genes hTERT and hTR, encoding telomerase reverse transcriptase and telomerase RNA, respectively, cause autosomal dominant dyskeratosis congenita, a rare hereditary disorder associated with premature death from aplastic anemia and pulmonary fibrosis. To test the hypothesis that familial idiopathic pulmonary fibrosis may be caused by short telomeres, we screened 73 probands from the Vanderbilt Familial Pulmonary Fibrosis Registry for mutations in hTERT and hTR. Six probands (8%) had heterozygous mutations in hTERT or hTR; mutant telomerase resulted in short telomeres. Asymptomatic subjects with mutant telomerase also had short telomeres, suggesting that they may be at risk for the disease. We did not identify any of the classic features of dyskeratosis congenita in five of the six families. Mutations in the genes encoding telomerase components can appear as familial idiopathic pulmonary fibrosis. Our findings support the idea that pathways leading to telomere shortening are involved in the pathogenesis of this disease. Copyright 2007 Massachusetts Medical Society.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Telomere diseases.

                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                19 May 2010
                : 5
                : 5
                : e10680
                Affiliations
                [1 ]McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
                [2 ]Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
                [3 ]Department of Pathology, The State University of New York Upstate Medical University, Syracuse, New York, United States of America
                [4 ]Department of Radiology, University of Washington Medical Center, Seattle, Washington, United States of America
                [5 ]Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Washington Medical Center, Seattle, Washington, United States of America
                [6 ]Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Chicago, Chicago, Illinois, United States of America
                University of Giessen Lung Center, Germany
                Author notes

                Conceived and designed the experiments: CKG. Performed the experiments: ADdL JTC ALAK JDG. Analyzed the data: ADdL JTC ALAK JDG GR CX CKG. Contributed reagents/materials/analysis tools: GR CSG RLR CEG ERG CX. Wrote the paper: CKG.

                Article
                09-PONE-RA-15180R2
                10.1371/journal.pone.0010680
                2873288
                20502709
                23c7e7c3-49c5-444a-a36b-331014f62870
                Diaz de Leon et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 28 December 2009
                : 23 April 2010
                Page count
                Pages: 12
                Categories
                Research Article
                Genetics and Genomics
                Respiratory Medicine
                Genetics and Genomics/Epigenetics
                Genetics and Genomics/Medical Genetics
                Respiratory Medicine/Interstitial Lung Diseases

                Uncategorized
                Uncategorized

                Comments

                Comment on this article