5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Paracetamol, alcohol and the liver : Paracetamol, alcohol and the liver

      British Journal of Clinical Pharmacology
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references113

          • Record: found
          • Abstract: found
          • Article: not found

          Role of CYP2E1 in the hepatotoxicity of acetaminophen.

          CYP2El, a cytochrome P-450 that is well conserved across mammalian species, metabolizes ethanol and many low molecular weight toxins and cancer suspect agents. The cyp2e1 gene was isolated, and a mouse line that lacks expression of CYP2E1 was generated by homologous recombination in embryonic stem cells. Animals deficient in expression of the enzyme were fertile, developed normally, and exhibited no obvious phenotypic abnormalities, thus indicating that CYP2E1 has no critical role in mammalian development and physiology in the absence of external stimuli. When cyp2el knockout mice were challenged with the common analgesic acetaminophen, they were found to be considerably less sensitive to its hepatotoxic effects than wild-type animals, indicating that this P-450 is the principal enzyme responsible for the metabolic conversion of the drug to its active hepatotoxic metabolite.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Acetaminophen activation by human liver cytochromes P450IIE1 and P450IA2.

            Acetaminophen (APAP), a widely used over-the-counter analgesic, is known to cause hepatotoxicity when ingested in large quantities in both animals and man, especially when administered after chronic ethanol consumption. Hepatotoxicity stems from APAP activation by microsomal P450 monooxygenases to a reactive metabolite that binds to tissue macromolecules, thereby initiating cellular necrosis. Alcohol consumption also causes the induction of P450IIE1, a liver microsomal enzyme that in reconstitution studies has proven to be an effective catalyst of APAP oxidation. Thus, elevated microsomal P450IIE1 levels could explain not only the known increase in APAP bioactivating activity of liver microsomes after prolonged ethanol ingestion but also the enhanced susceptibility to APAP toxicity. We therefore examined the role of P450IIE1 in human liver microsomal APAP activation. Liver microsomes from seven non-alcoholic subjects were found to convert 1 mM APAP to a reactive intermediate (detected as an APAP-cysteine conjugate by high-pressure liquid chromatography) at a rate of 0.25 +/- 0.1 nmol conjugate formed/min/nmol microsomal P450 (mean +/- SD), whereas at 10 mM, this rate increased to 0.73 +/- 0.2 nmol product/min/nmol P450. In a reconstituted system, purified human liver P450IIE1 catalyzed APAP activation at rates threefold higher than those obtained with microsomes whereas two other human P450s, P450IIC8 and P450IIC9, exhibited negligible APAP-oxidizing activity. Monospecific antibodies (IgG) directed against human P450IIE1 inhibited APAP activation in each of the human samples, with anti-P450IIE1 IgG-mediated inhibition averaging 52% (range = 30-78%) of the rates determined in the presence of control IgG. The ability of anti-P450IIE1 IgG to inhibit only one-half of the total APAP activation by microsomes suggests, however, that other P450 isozymes besides P450IIE1 contribute to bioactivation of this compound in human liver. Of the other purified P450 isozymes examined, a beta-naphthoflavone (BNF)-inducible hamster liver P450 promoted APAP activation at rates even higher than those obtained with human P450IIE1. The extensive APAP-oxidizing capacity of this hamster P450, designated P450IA2 based upon its similarity to rat P450d and rabbit form 4 in terms of NH2-terminal amino acid sequence, spectral characteristics, immunochemical properties, and inducibility by BNF, agrees with previous reports concerning the APAP substrate specificity of the rat and rabbit P450IA2 proteins.(ABSTRACT TRUNCATED AT 400 WORDS)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Protection against acetaminophen toxicity in CYP1A2 and CYP2E1 double-null mice.

              Acetaminophen (APAP) hepatotoxicity is due to its biotransformation to a reactive metabolite, N-acetyl-p-benzoquinone imine (NAPQI), that is capable of binding to cellular macromolecules. At least two forms of cytochrome P450, CYP2E1 and CYP1A2, have been implicated in this reaction in mice. To test the combined roles of CYP1A2 and CYP2E1 in an intact animal model, a double-null mouse line lacking functional expression of CYP1A2 and CYP2E1 was produced by cross-breeding Cyp1a2-/- mice with Cyp2e1-/- mice. Animals deficient in the expression of both P450s developed normally and exhibited no obvious phenotypic abnormalities. Comparison of the dose-response to APAP (200-1200 mg/kg) indicated that double-null animals were highly resistant to APAP-induced toxicity whereas the wild-type animals were sensitive. Administration of 600 to 800 mg/kg of this drug to male wild-type animals resulted in increased plasma concentrations of liver enzymes (alanine aminotransferase, sorbitol dehydrogenase), lipidosis, hepatic necrosis, and renal tubular necrosis. In contrast, when APAP of equivalent or higher dose was administered to the double-null mice, plasma levels of liver enzymes and liver histopathology were normal. However, administration of 1200 mg of APAP/kg to the double-null mice resulted in infrequent liver lipidosis and mild kidney lesions. Consistent with the protection from hepatotoxicity, the expected depletion of hepatic glutathione (GSH) content was significantly retarded and APAP covalent binding to hepatic cytosolic proteins was not detectable in the double-null mice. Likewise, in vitro activation of APAP by liver microsomes from the double-null mice was approximately one tenth of that in microsomes from wild-type mice. Thus, the protection against APAP toxicity afforded by deletion of both CYP2E1 and CYP1A2 likely reflects greatly diminished production of the toxic electrophile, NAPQI. Copyright 1998 Academic Press.
                Bookmark

                Author and article information

                Journal
                British Journal of Clinical Pharmacology
                Wiley
                03065251
                13652125
                April 2000
                December 24 2001
                : 49
                : 4
                : 291-301
                Article
                10.1046/j.1365-2125.2000.00167.x
                23d8d115-c573-4186-9b0e-d5006c9d3f21
                © 2001

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article