67
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mutation in BMPR2 Promoter: A ‘Second Hit’ for Manifestation of Pulmonary Arterial Hypertension?

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Hereditary pulmonary arterial hypertension (HPAH) can be caused by autosomal dominant inherited mutations of TGF-β genes, such as the bone morphogenetic protein receptor 2 (BMPR2) and Endoglin (ENG) gene. Additional modifier genes may play a role in disease manifestation and severity. In this study we prospectively assessed two families with known BMPR2 or ENG mutations clinically and genetically and screened for a second mutation in the BMPR2 promoter region.

          Methods

          We investigated the BMPR2 promoter region by direct sequencing in two index-patients with invasively confirmed diagnosis of HPAH, carrying a mutation in the BMPR2 and ENG gene, respectively. Sixteen family members have been assessed clinically by non-invasive methods and genetically by direct sequencing.

          Results

          In both index patients with a primary BMPR2 deletion (exon 2 and 3) and Endoglin missense variant (c.1633G>A, p.(G545S)), respectively, we detected a second mutation (c.-669G>A) in the promoter region of the BMPR2 gene. The index patients with 2 mutations/variants were clinically severely affected at early age, whereas further family members with only one mutation had no manifest HPAH.

          Conclusion

          The finding of this study supports the hypothesis that additional mutations may lead to an early and severe manifestation of HPAH. This study shows for the first time that in the regulatory region of the BMPR2 gene the promoter may be important for disease penetrance. Further studies are needed to assess the incidence and clinical relevance of mutations of the BMPR2 promoter region in a larger patient cohort.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          A novel channelopathy in pulmonary arterial hypertension.

          Pulmonary arterial hypertension is a devastating disease with high mortality. Familial cases of pulmonary arterial hypertension are usually characterized by autosomal dominant transmission with reduced penetrance, and some familial cases have unknown genetic causes. We studied a family in which multiple members had pulmonary arterial hypertension without identifiable mutations in any of the genes known to be associated with the disease, including BMPR2, ALK1, ENG, SMAD9, and CAV1. Three family members were studied with whole-exome sequencing. Additional patients with familial or idiopathic pulmonary arterial hypertension were screened for the mutations in the gene that was identified on whole-exome sequencing. All variants were expressed in COS-7 cells, and channel function was studied by means of patch-clamp analysis. We identified a novel heterozygous missense variant c.608 G→A (G203D) in KCNK3 (the gene encoding potassium channel subfamily K, member 3) as a disease-causing candidate gene in the family. Five additional heterozygous missense variants in KCNK3 were independently identified in 92 unrelated patients with familial pulmonary arterial hypertension and 230 patients with idiopathic pulmonary arterial hypertension. We used in silico bioinformatic tools to predict that all six novel variants would be damaging. Electrophysiological studies of the channel indicated that all these missense mutations resulted in loss of function, and the reduction in the potassium-channel current was remedied by the application of the phospholipase inhibitor ONO-RS-082. Our study identified the association of a novel gene, KCNK3, with familial and idiopathic pulmonary arterial hypertension. Mutations in this gene produced reduced potassium-channel current, which was successfully remedied by pharmacologic manipulation. (Funded by the National Institutes of Health.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Spectrum and prevalence of mutations from the first 2,500 consecutive unrelated patients referred for the FAMILION long QT syndrome genetic test.

            Long QT syndrome (LQTS) is a potentially lethal, highly treatable cardiac channelopathy for which genetic testing has matured from discovery to translation and now clinical implementation. Here we examine the spectrum and prevalence of mutations found in the first 2,500 unrelated cases referred for the FAMILION LQTS clinical genetic test. Retrospective analysis of the first 2,500 cases (1,515 female patients, average age at testing 23 +/- 17 years, range 0 to 90 years) scanned for mutations in 5 of the LQTS-susceptibility genes: KCNQ1 (LQT1), KCNH2 (LQT2), SCN5A (LQT3), KCNE1 (LQT5), and KCNE2 (LQT6). Overall, 903 referral cases (36%) hosted a possible LQTS-causing mutation that was absent in >2,600 reference alleles; 821 (91%) of the mutation-positive cases had single genotypes, whereas the remaining 82 patients (9%) had >1 mutation in > or =1 gene, including 52 cases that were compound heterozygous with mutations in >1 gene. Of the 562 distinct mutations, 394 (70%) were missense, 428 (76%) were seen once, and 336 (60%) are novel, including 92 of 199 in KCNQ1, 159 of 226 in KCNH2, and 70 of 110 in SCN5A. This cohort increases the publicly available compendium of putative LQTS-associated mutations by >50%, and approximately one-third of the most recently detected mutations continue to be novel. Although control population data suggest that the great majority of these mutations are pathogenic, expert interpretation of genetic test results will remain critical for effective clinical use of LQTS genetic test results.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              EIF2AK4 mutations cause pulmonary veno-occlusive disease, a recessive form of pulmonary hypertension.

              Pulmonary veno-occlusive disease (PVOD) is a rare and devastating cause of pulmonary hypertension that is characterized histologically by widespread fibrous intimal proliferation of septal veins and preseptal venules and is frequently associated with pulmonary capillary dilatation and proliferation. PVOD is categorized into a separate pulmonary arterial hypertension-related group in the current classification of pulmonary hypertension. PVOD presents either sporadically or as familial cases with a seemingly recessive mode of transmission. Using whole-exome sequencing, we detected recessive mutations in EIF2AK4 (also called GCN2) that cosegregated with PVOD in all 13 families studied. We also found biallelic EIF2AK4 mutations in 5 of 20 histologically confirmed sporadic cases of PVOD. All mutations, either in a homozygous or compound-heterozygous state, disrupted the function of the gene. These findings point to EIF2AK4 as the major gene that is linked to PVOD development and contribute toward an understanding of the complex genetic architecture of pulmonary hypertension.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                13 July 2015
                2015
                : 10
                : 7
                : e0133042
                Affiliations
                [1 ]University Hospital Heidelberg, Centre for pulmonary hypertension of the Thoraxclinic Heidelberg, Heidelberg, Germany
                [2 ]Heidelberg University, Institute of Human Genetics, Heidelberg, Germany
                University Hospital Freiburg, GERMANY
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: RRV CAE NE CF EG KH. Performed the experiments: RRV CAE NE CF ML EG KH. Analyzed the data: RRV CAE NE CF ML EG KH. Contributed reagents/materials/analysis tools: RRV CAE NE CF EG KH. Wrote the paper: RRV CAE NE CF ML EG KH.

                Article
                PONE-D-15-09916
                10.1371/journal.pone.0133042
                4500409
                26167679
                23db8311-e7fd-47b8-8c88-20552d921df3
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 12 March 2015
                : 22 June 2015
                Page count
                Figures: 2, Tables: 2, Pages: 11
                Funding
                The authors received no specific funding for this work.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article