19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      ZnO nanowire growth and devices

      , , , , , , ,
      Materials Science and Engineering: R: Reports
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references115

          • Record: found
          • Abstract: found
          • Article: not found

          Zener model description of ferromagnetism in zinc-blende magnetic semiconductors

          Ferromagnetism in manganese compound semiconductors not only opens prospects for tailoring magnetic and spin-related phenomena in semiconductors with a precision specific to III-V compounds but also addresses a question about the origin of the magnetic interactions that lead to a Curie temperature (T(C)) as high as 110 K for a manganese concentration of just 5%. Zener's model of ferromagnetism, originally proposed for transition metals in 1950, can explain T(C) of Ga(1-)(x)Mn(x)As and that of its II-VI counterpart Zn(1-)(x)Mn(x)Te and is used to predict materials with T(C) exceeding room temperature, an important step toward semiconductor electronics that use both charge and spin.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Making nonmagnetic semiconductors ferromagnetic

            Ohno (1998)
            REVIEW Semiconductor devices generally take advantage of the charge of electrons, whereas magnetic materials are used for recording information involving electron spin. To make use of both charge and spin of electrons in semiconductors, a high concentration of magnetic elements can be introduced in nonmagnetic III-V semiconductors currently in use for devices. Low solubility of magnetic elements was overcome by low-temperature nonequilibrium molecular beam epitaxial growth, and ferromagnetic (Ga,Mn)As was realized. Magnetotransport measurements revealed that the magnetic transition temperature can be as high as 110 kelvin. The origin of the ferromagnetic interaction is discussed. Multilayer heterostructures including resonant tunneling diodes (RTDs) have also successfully been fabricated. The magnetic coupling between two ferromagnetic (Ga,Mn)As films separated by a nonmagnetic layer indicated the critical role of the holes in the magnetic coupling. The magnetic coupling in all semiconductor ferromagnetic/nonmagnetic layered structures, together with the possibility of spin filtering in RTDs, shows the potential of the present material system for exploring new physics and for developing new functionality toward future electronics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nanobelts of semiconducting oxides.

              Ultralong beltlike (or ribbonlike) nanostructures (so-called nanobelts) were successfully synthesized for semiconducting oxides of zinc, tin, indium, cadmium, and gallium by simply evaporating the desired commercial metal oxide powders at high temperatures. The as-synthesized oxide nanobelts are pure, structurally uniform, and single crystalline, and most of them are free from defects and dislocations. They have a rectanglelike cross section with typical widths of 30 to 300 nanometers, width-to-thickness ratios of 5 to 10, and lengths of up to a few millimeters. The beltlike morphology appears to be a distinctive and common structural characteristic for the family of semiconducting oxides with cations of different valence states and materials of distinct crystallographic structures. The nanobelts could be an ideal system for fully understanding dimensionally confined transport phenomena in functional oxides and building functional devices along individual nanobelts.
                Bookmark

                Author and article information

                Journal
                Materials Science and Engineering: R: Reports
                Materials Science and Engineering: R: Reports
                Elsevier BV
                0927796X
                December 2004
                December 2004
                : 47
                : 1-2
                : 1-47
                Article
                10.1016/j.mser.2004.09.001
                23e1697a-47da-4e41-b36d-8312adae6618
                © 2004

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article