17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Nose to brain drug delivery - A promising strategy for active components from herbal medicine for treating cerebral ischemia reperfusion

      , , , , , , ,
      Pharmacological Research
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d4681816e132">Cerebral ischemia reperfusion injury (CIRI), one of the major causes of death from stroke in the world, not only causes tremendous damage to human health, but also brings heavy economic burden to society. Current available treatments for CIRI, including mechanical therapies and drug therapies, are often accompanied by significant side-effects. Therefore, it is necessary to discovery new strategies for treating CIRI. Many studies have confirmed that the herbal medicine has the advantages of abundant resources, good curative effect and little side effects, which can be used as potential drug for treatment of CIRI through multiple targets. It's known that oral administration commonly has low bioavailability, and injection administration is inconvenient and unsafe. Many drugs can't delivery to brain through routine pathways due to the blood-brain-barrier (BBB). Interestingly, increasing evidences have suggested the nasal administration is a potential direct route to transport drug into brain avoiding the BBB and has the characteristics of high bioavailability for treating brain diseases. Therefore, intranasal administration can be treated as an alternative way to treat brain diseases. In the present review, effective methods to treat CIRI by using active ingredients derived from herbal medicine through nose to brain drug delivery (NBDD) are updated and discussed, and some related pharmacological mechanisms have also been emphasized. Our present study would be beneficial for the further drug development of natural agents from herbal medicines via NBDD. </p>

          Related collections

          Most cited references216

          • Record: found
          • Abstract: found
          • Article: not found

          Natural Products as Sources of New Drugs from 1981 to 2014.

          This contribution is a completely updated and expanded version of the four prior analogous reviews that were published in this journal in 1997, 2003, 2007, and 2012. In the case of all approved therapeutic agents, the time frame has been extended to cover the 34 years from January 1, 1981, to December 31, 2014, for all diseases worldwide, and from 1950 (earliest so far identified) to December 2014 for all approved antitumor drugs worldwide. As mentioned in the 2012 review, we have continued to utilize our secondary subdivision of a "natural product mimic", or "NM", to join the original primary divisions and the designation "natural product botanical", or "NB", to cover those botanical "defined mixtures" now recognized as drug entities by the U.S. FDA (and similar organizations). From the data presented in this review, the utilization of natural products and/or their novel structures, in order to discover and develop the final drug entity, is still alive and well. For example, in the area of cancer, over the time frame from around the 1940s to the end of 2014, of the 175 small molecules approved, 131, or 75%, are other than "S" (synthetic), with 85, or 49%, actually being either natural products or directly derived therefrom. In other areas, the influence of natural product structures is quite marked, with, as expected from prior information, the anti-infective area being dependent on natural products and their structures. We wish to draw the attention of readers to the rapidly evolving recognition that a significant number of natural product drugs/leads are actually produced by microbes and/or microbial interactions with the "host from whence it was isolated", and therefore it is considered that this area of natural product research should be expanded significantly.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Intranasal delivery of biologics to the central nervous system.

            Treatment of central nervous system (CNS) diseases is very difficult due to the blood-brain barrier's (BBB) ability to severely restrict entry of all but small, non-polar compounds. Intranasal administration is a non-invasive method of drug delivery which may bypass the BBB to allow therapeutic substances direct access to the CNS. Intranasal delivery of large molecular weight biologics such as proteins, gene vectors, and stem cells is a potentially useful strategy to treat a variety of diseases/disorders of the CNS including stroke, Parkinson's disease, multiple sclerosis, Alzheimer's disease, epilepsy, and psychiatric disorders. Here we give an overview of relevant nasal anatomy and physiology and discuss the pathways and mechanisms likely involved in drug transport from the nasal epithelium to the CNS. Finally we review both pre-clinical and clinical studies involving intranasal delivery of biologics to the CNS. Copyright © 2011 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms of ischemic brain damage.

              In the United States stroke is the third leading cause of death and the leading cause of disability. Brain injury following stroke results from the complex interplay of multiple pathways including excitotoxicity, acidotoxicity, ionic imbalance, peri-infarct depolarization, oxidative and nitrative stress, inflammation and apoptosis. There are very few treatments for stroke and the development of new treatments requires a comprehensive understanding of the diverse mechanisms of ischemic brain damage that are responsible for neuronal death. Here, we discuss the underlying pathophysiology of this devastating disease and reveal the intertwined pathways that are the target of therapeutic intervention.
                Bookmark

                Author and article information

                Journal
                Pharmacological Research
                Pharmacological Research
                Elsevier BV
                10436618
                September 2020
                September 2020
                : 159
                : 104795
                Article
                10.1016/j.phrs.2020.104795
                32278035
                23e42ce4-9594-4912-b627-0f39c675b34c
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article