14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The role of the vitamin D receptor and ERp57 in photoprotection by 1α,25-dihydroxyvitamin D3.

      Molecular Endocrinology
      Calcitriol, physiology, Cell Nucleus, metabolism, Cells, Cultured, Familial Hypophosphatemic Rickets, pathology, Fibroblasts, radiation effects, Humans, Mutation, Missense, Protein Binding, Protein Disulfide-Isomerases, genetics, Protein Structure, Tertiary, Pyrimidine Dimers, Receptors, Calcitriol, Transcriptional Activation, Tumor Suppressor Protein p53, Ultraviolet Rays, Up-Regulation

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          UV radiation (UVR) is essential for formation of vitamin D(3), which can be hydroxylated locally in the skin to 1α,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)]. Recent studies implicate 1,25-(OH)(2)D(3) in reduction of UVR-induced DNA damage, particularly thymine dimers. There is evidence that photoprotection occurs through the steroid nongenomic pathway for 1,25-(OH)(2)D(3) action. In the current study, we tested the involvement of the classical vitamin D receptor (VDR) and the endoplasmic reticulum stress protein 57 (ERp57), in the mechanisms of photoprotection. The protective effects of 1,25-(OH)(2)D(3) against thymine dimers were abolished in fibroblasts from patients with hereditary vitamin D-resistant rickets that expressed no VDR protein, indicating that the VDR is essential for photoprotection. Photoprotection remained in hereditary vitamin D-resistant rickets fibroblasts expressing a VDR with a defective DNA-binding domain or a mutation in helix H1 of the classical ligand-binding domain, both defects resulting in a failure to mediate genomic responses, implicating nongenomic responses for photoprotection. Ab099, a neutralizing antibody to ERp57, and ERp57 small interfering RNA completely blocked protection against thymine dimers in normal fibroblasts. Co-IP studies showed that the VDR and ERp57 interact in nonnuclear extracts of fibroblasts. 1,25-(OH)(2)D(3) up-regulated expression of the tumor suppressor p53 in normal fibroblasts. This up-regulation of p53, however, was observed in all mutant fibroblasts, including those with no VDR, and with Ab099; therefore, VDR and ERp57 are not essential for p53 regulation. The data implicate the VDR and ERp57 as critical components for actions of 1,25-(OH)(2)D(3) against DNA damage, but the VDR does not require normal DNA binding or classical ligand binding to mediate photoprotection.

          Related collections

          Author and article information

          Comments

          Comment on this article