111
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Quantitative Models of the Mechanisms That Control Genome-Wide Patterns of Transcription Factor Binding during Early Drosophila Development

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transcription factors that drive complex patterns of gene expression during animal development bind to thousands of genomic regions, with quantitative differences in binding across bound regions mediating their activity. While we now have tools to characterize the DNA affinities of these proteins and to precisely measure their genome-wide distribution in vivo, our understanding of the forces that determine where, when, and to what extent they bind remains primitive. Here we use a thermodynamic model of transcription factor binding to evaluate the contribution of different biophysical forces to the binding of five regulators of early embryonic anterior-posterior patterning in Drosophila melanogaster. Predictions based on DNA sequence and in vitro protein-DNA affinities alone achieve a correlation of ∼0.4 with experimental measurements of in vivo binding. Incorporating cooperativity and competition among the five factors, and accounting for spatial patterning by modeling binding in every nucleus independently, had little effect on prediction accuracy. A major source of error was the prediction of binding events that do not occur in vivo, which we hypothesized reflected reduced accessibility of chromatin. To test this, we incorporated experimental measurements of genome-wide DNA accessibility into our model, effectively restricting predicted binding to regions of open chromatin. This dramatically improved our predictions to a correlation of 0.6–0.9 for various factors across known target genes. Finally, we used our model to quantify the roles of DNA sequence, accessibility, and binding competition and cooperativity. Our results show that, in regions of open chromatin, binding can be predicted almost exclusively by the sequence specificity of individual factors, with a minimal role for protein interactions. We suggest that a combination of experimentally determined chromatin accessibility data and simple computational models of transcription factor binding may be used to predict the binding landscape of any animal transcription factor with significant precision.

          Author Summary

          During early stages of development, regulatory proteins bind DNA and control the expression of nearby genes, thereby driving spatial and temporal patterns of gene expression during development. But the biochemical forces that determine where these regulatory proteins bind are poorly understood. We gathered experimental data on the activities of several key regulators of early development of the fruit fly ( Drosophila melanogaster) and developed a computational method to predict where and how strongly they will bind. We find that competition, cooperativity, and other interactions among individual regulatory proteins have a limited effect on their binding, while the global accessibility of DNA to protein binding has a significant impact on the binding of all factors. Our results suggest a practical method for predicting regulatory binding by combining experimental DNA accessibility assays with computational algorithms to determine where will binding occur among the accessible regions of the genome.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: found
          • Article: not found

          A genomic code for nucleosome positioning.

          Eukaryotic genomes are packaged into nucleosome particles that occlude the DNA from interacting with most DNA binding proteins. Nucleosomes have higher affinity for particular DNA sequences, reflecting the ability of the sequence to bend sharply, as required by the nucleosome structure. However, it is not known whether these sequence preferences have a significant influence on nucleosome position in vivo, and thus regulate the access of other proteins to DNA. Here we isolated nucleosome-bound sequences at high resolution from yeast and used these sequences in a new computational approach to construct and validate experimentally a nucleosome-DNA interaction model, and to predict the genome-wide organization of nucleosomes. Our results demonstrate that genomes encode an intrinsic nucleosome organization and that this intrinsic organization can explain approximately 50% of the in vivo nucleosome positions. This nucleosome positioning code may facilitate specific chromosome functions including transcription factor binding, transcription initiation, and even remodelling of the nucleosomes themselves.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DNA binding sites: representation and discovery.

            G Stormo (2000)
            The purpose of this article is to provide a brief history of the development and application of computer algorithms for the analysis and prediction of DNA binding sites. This problem can be conveniently divided into two subproblems. The first is, given a collection of known binding sites, develop a representation of those sites that can be used to search new sequences and reliably predict where additional binding sites occur. The second is, given a set of sequences known to contain binding sites for a common factor, but not knowing where the sites are, discover the location of the sites in each sequence and a representation for the specificity of the protein.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transcriptional regulation by the numbers: models.

              The expression of genes is regularly characterized with respect to how much, how fast, when and where. Such quantitative data demands quantitative models. Thermodynamic models are based on the assumption that the level of gene expression is proportional to the equilibrium probability that RNA polymerase (RNAP) is bound to the promoter of interest. Statistical mechanics provides a framework for computing these probabilities. Within this framework, interactions of activators, repressors, helper molecules and RNAP are described by a single function, the "regulation factor". This analysis culminates in an expression for the probability of RNA polymerase binding at the promoter of interest as a function of the number of regulatory proteins in the cell.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                February 2011
                February 2011
                3 February 2011
                : 7
                : 2
                : e1001290
                Affiliations
                [1 ]Department of Molecular and Cell Biology, California Institute of Quantitative Biosciences, University of California Berkeley, Berkeley, California, United States of America
                [2 ]Howard Hughes Medical Institute, University of California Berkeley, Berkeley, California, United States of America
                [3 ]Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
                [4 ]Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
                Stanford University, United States of America
                Author notes

                Conceived and designed the experiments: TK MDB MBE. Performed the experiments: TK XYL PJS ST. Analyzed the data: TK. Contributed reagents/materials/analysis tools: TK JAS MDB MBE. Wrote the paper: TK MDB MBE.

                Article
                10-PLGE-RA-4270R1
                10.1371/journal.pgen.1001290
                3033374
                21304941
                23e537ed-e13f-403d-a0c7-211d6d5cbe71
                This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
                History
                : 4 November 2010
                : 1 January 2011
                Page count
                Pages: 15
                Categories
                Research Article
                Computational Biology/Transcriptional Regulation
                Genetics and Genomics

                Genetics
                Genetics

                Comments

                Comment on this article