Blog
About

5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Mechanisms of signalling and biased agonism in G protein-coupled receptors

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 181

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular signatures of G-protein-coupled receptors.

          G-protein-coupled receptors (GPCRs) are physiologically important membrane proteins that sense signalling molecules such as hormones and neurotransmitters, and are the targets of several prescribed drugs. Recent exciting developments are providing unprecedented insights into the structure and function of several medically important GPCRs. Here, through a systematic analysis of high-resolution GPCR structures, we uncover a conserved network of non-covalent contacts that defines the GPCR fold. Furthermore, our comparative analysis reveals characteristic features of ligand binding and conformational changes during receptor activation. A holistic understanding that integrates molecular and systems biology of GPCRs holds promise for new therapeutics and personalized medicine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor.

            Calcitonin-gene-related peptide (CGRP) and adrenomedullin are related peptides with distinct pharmacological profiles. Here we show that a receptor with seven transmembrane domains, the calcitonin-receptor-like receptor (CRLR), can function as either a CGRP receptor or an adrenomedullin receptor, depending on which members of a new family of single-transmembrane-domain proteins, which we have called receptor-activity-modifying proteins or RAMPs, are expressed. RAMPs are required to transport CRLR to the plasma membrane. RAMP1 presents the receptor at the cell surface as a mature glycoprotein and a CGRP receptor. RAMP2-transported receptors are core-glycosylated and are adrenomedullin receptors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Caveolae as plasma membrane sensors, protectors and organizers.

              Caveolae are submicroscopic, plasma membrane pits that are abundant in many mammalian cell types. The past few years have seen a quantum leap in our understanding of the formation, dynamics and functions of these enigmatic structures. Caveolae have now emerged as vital plasma membrane sensors that can respond to plasma membrane stresses and remodel the extracellular environment. Caveolae at the plasma membrane can be removed by endocytosis to regulate their surface density or can be disassembled and their structural components degraded. Coat proteins, called cavins, work together with caveolins to regulate the formation of caveolae but also have the potential to dynamically transmit signals that originate in caveolae to various cellular destinations. The importance of caveolae as protective elements in the plasma membrane, and as membrane organizers and sensors, is highlighted by links between caveolae dysfunction and human diseases, including muscular dystrophies and cancer.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Molecular Cell Biology
                Nat Rev Mol Cell Biol
                Springer Nature America, Inc
                1471-0072
                1471-0080
                August 13 2018
                Article
                10.1038/s41580-018-0049-3
                © 2018

                http://www.springer.com/tdm

                Comments

                Comment on this article