16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Myomegalin is necessary for the formation of centrosomal and Golgi-derived microtubules

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          The generation of cellular microtubules is initiated at specific sites such as the centrosome and the Golgi apparatus that contain nucleation complexes rich in γ-tubulin. The microtubule growing plus-ends are stabilized by plus-end tracking proteins (+TIPs), mainly EB1 and associated proteins. Myomegalin was identified as a centrosome/Golgi protein associated with cyclic nucleotide phosphodiesterase. We show here that Myomegalin exists as several isoforms. We characterize two of them. One isoform, CM-MMG, harbors a conserved domain (CM1), recently described as a nucleation activator, and is related to a family of γ-tubulin binding proteins, which includes Drosophila centrosomin. It localizes at the centrosome and at the cis-Golgi in an AKAP450-dependent manner. It recruits γ-tubulin nucleating complexes and promotes microtubule nucleation. The second isoform, EB-MMG, is devoid of CM1 domain and has a unique N-terminus with potential EB1-binding sites. It localizes at the cis-Golgi and can localize to microtubule plus-ends. EB-MMG binds EB1 and affects its loading on microtubules and microtubule growth. Depletion of Myomegalin by small interfering RNA delays microtubule growth from the centrosome and Golgi apparatus, and decreases directional migration of RPE1 cells. In conclusion, the Myomegalin gene encodes different isoforms that regulate microtubules. At least two of these have different roles, demonstrating a previously unknown mechanism to control microtubules in vertebrate cells.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Tracking the ends: a dynamic protein network controls the fate of microtubule tips.

          Microtubule plus-end tracking proteins (+TIPs) are a diverse group of evolutionarily conserved cellular factors that accumulate at the ends of growing microtubules. They form dynamic networks through the interaction of a limited set of protein modules, repeat sequences and linear motifs that bind to each other with moderate affinities. +TIPs regulate different aspects of cell architecture by controlling microtubule dynamics, microtubule interactions with cellular structures and signalling factors, and the forces that are exerted on microtubule networks.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            p53 isoforms can regulate p53 transcriptional activity.

            The recently discovered p53-related genes, p73 and p63, express multiple splice variants and N-terminally truncated forms initiated from an alternative promoter in intron 3. To date, no alternative promoter and multiple splice variants have been described for the p53 gene. In this study, we show that p53 has a gene structure similar to the p73 and p63 genes. The human p53 gene contains an alternative promoter and transcribes multiple splice variants. We show that p53 variants are expressed in normal human tissue in a tissue-dependent manner. We determine that the alternative promoter is conserved through evolution from Drosophila to man, suggesting that the p53 family gene structure plays an essential role in the multiple activities of the p53 family members. Consistent with this hypothesis, p53 variants are differentially expressed in human breast tumors compared with normal breast tissue. We establish that p53beta can bind differentially to promoters and can enhance p53 target gene expression in a promoter-dependent manner, while Delta133p53 is dominant-negative toward full-length p53, inhibiting p53-mediated apoptosis. The differential expression of the p53 isoforms in human tumors may explain the difficulties in linking p53 status to the biological properties and drug sensitivity of human cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An EB1-binding motif acts as a microtubule tip localization signal.

              Microtubules are filamentous polymers essential for cell viability. Microtubule plus-end tracking proteins (+TIPs) associate with growing microtubule plus ends and control microtubule dynamics and interactions with different cellular structures during cell division, migration, and morphogenesis. EB1 and its homologs are highly conserved proteins that play an important role in the targeting of +TIPs to microtubule ends, but the underlying molecular mechanism remains elusive. By using live cell experiments and in vitro reconstitution assays, we demonstrate that a short polypeptide motif, Ser-x-Ile-Pro (SxIP), is used by numerous +TIPs, including the tumor suppressor APC, the transmembrane protein STIM1, and the kinesin MCAK, for localization to microtubule tips in an EB1-dependent manner. Structural and biochemical data reveal the molecular basis of the EB1-SxIP interaction and explain its negative regulation by phosphorylation. Our findings establish a general "microtubule tip localization signal" (MtLS) and delineate a unifying mechanism for this subcellular protein targeting process.
                Bookmark

                Author and article information

                Journal
                Biol Open
                Biol Open
                biolopen
                bio
                Biology Open
                The Company of Biologists (Bidder Building, 140 Cowley Road, Cambridge, CB4 0DL, UK )
                2046-6390
                15 February 2013
                18 December 2012
                : 2
                : 2
                : 238-250
                Affiliations
                [1 ]Centre de Recherche en Cancérologie de Marseille , INSERM UMR1068, F-13009 Marseille, France
                [2 ]Institut Paoli-Calmettes , F-13009 Marseille, France
                [3 ]CNRS U7258, F-13009 Marseille, France
                [4 ]Aix-Marseille Université , F-13007 Marseille, France
                [5 ]Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre , Cambridge CB2 0RE, UK
                Author notes
                [* ]Author for correspondence ( olivier.rosnet@ 123456inserm.fr )
                Article
                BIO20123392
                10.1242/bio.20123392
                3575658
                23430395
                23ef6c9e-acb2-4f46-8fde-047fda5accc6
                © 2012. Published by The Company of Biologists Ltd

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Share Alike License ( http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 18 October 2012
                : 21 November 2012
                Categories
                Research Article

                Life sciences
                centrosome,eb1,golgi,microtubule,γ-tubulin
                Life sciences
                centrosome, eb1, golgi, microtubule, γ-tubulin

                Comments

                Comment on this article