5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The vertical structure of precipitation at two stations in East Antarctica derived from micro rain radars

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p><strong>Abstract.</strong> Precipitation over Antarctica is the main term in the surface mass balance of the Antarctic ice sheet, which is crucial for the future evolution of the sea level worldwide. Precipitation, however, remains poorly documented and understood mainly because of a lack of observations in this extreme environment. Two observatories dedicated to precipitation have been set up at the Belgian station Princess Elisabeth (PE) and at the French station Dumont d'Urville (DDU) in East Antarctica. Among other instruments, both sites have a vertically pointing micro rain radar (MRR) working at the K band. Measurements have been continuously collected at DDU since the austral summer of 2015–2016, while they have been collected mostly during summer seasons at PE since 2010, with a full year of observation during 2012. In this study, the statistics of the vertical profiles of reflectivity, vertical velocity, and spectral width are analyzed for all seasons. Vertical profiles were separated into surface precipitation and virga to evaluate the impact of virga on the structure of the vertical profiles. The climatology of the study area plays an important role in the structure of the precipitation: warmer and moister atmospheric conditions at DDU favor the occurrence of more intense precipitation compared with PE, with a difference of 8<span class="thinspace"></span>dBZ between both stations. The strong katabatic winds blowing at DDU induce a decrease in reflectivity close to the ground due to the sublimation of the snowfall particles. The vertical profiles of precipitation velocity show significant differences between the two stations. In general, at DDU the vertical velocity increases as the height decreases, while at PE the vertical velocity decreases as the height decreases. These features of the vertical profiles of reflectivity and vertical velocity could be explained by the more frequent occurrence of aggregation and riming at DDU compared to PE because of the lower temperature and relative humidity at the latter, located further in the interior. Robust and reliable statistics about the vertical profile of precipitation in Antarctica, as derived from MRRs for instance, are necessary and valuable for the evaluation of precipitation estimates derived from satellite measurements and from numerical atmospheric models.</p>

          Related collections

          Most cited references54

          • Record: found
          • Abstract: not found
          • Article: not found

          Doppler radar characteristics of precipitation at vertical incidence

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model

            This study evaluates the impact of a recent upgrade in the physics package of the regional atmospheric climate model RACMO2 on the simulated surface mass balance (SMB) of the Antarctic ice sheet. The modelled SMB increases, in particular over the grounded ice sheet of East Antarctica (+44 Gt a –1 ), with a small change in West Antarctica. This mainly results from an increase in precipitation, which is explained by changes in the cloud microphysics, including a new parameterization for ice cloud supersaturation, and changes in large-scale circulation patterns, which alter topographically forced precipitation. The spatial changes in SMB are evaluated using 3234 in situ SMB observations and ice-balance velocities, and the temporal variability using GRACE satellite retrievals. The in situ observations and balance velocities show a clear improvement of the spatial representation of the SMB in the interior of East Antarctica, which has become considerably wetter. No improvements are seen for West Antarctica and the coastal regions. A comparison of model SMB temporal variability with GRACE satellite retrievals shows no significant change in performance.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data – Part 1: Data and methods

                Bookmark

                Author and article information

                Journal
                The Cryosphere
                The Cryosphere
                Copernicus GmbH
                1994-0424
                2019
                January 28 2019
                : 13
                : 1
                : 247-264
                Article
                10.5194/tc-13-247-2019
                23f0e48a-f8d5-4f16-a7ef-cfd5960c87ca
                © 2019

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article