28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Voltage and Energy-Delay Performance of Giant Spin Hall Effect Switching for Magnetic Memory and Logic

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this letter, we show that Giant Spin Hall Effect (GSHE) MRAM can enable better energy- delay and voltage performance than traditional MTJ based spin torque devices at scaled nanomagnet dimensions (10-30 nm). Firstly, we derive the effect of dimensional scaling on spin injection efficiency, voltage-delay and energy-delay of spin torque switching using MTJs and GSHE and identify the optimum electrode geometry for low operating voltage (<0.1 V), high speed (>10 GHz) operation. We show that effective spin injection efficiency >100 % can be obtained using optimum spin hall electrode thickness for 30 nm nanomagnet widths. Finally, we derive the energy-delay trajectory of GSHE and MTJ devices to calculate the energy-delay product of GSHE and MTJ devices with an energy minimum at the characteristic time of the magnets. Optimized GSHE devices when combined with PMA can enable MRAM with scaled nanomagnets (30 nm X 60 nm), ultra-low voltage operation (< 0.1 V), fast switching times (10 ps) and switching energy as low as 100 aJ/bit.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Spin torque switching with the giant spin Hall effect of tantalum

          We report a giant spin Hall effect (SHE) in {\beta}-Ta that generates spin currents intense enough to induce efficient spin-transfer-torque switching of ferromagnets, thereby providing a new approach for controlling magnetic devices that can be superior to existing technologies. We quantify this SHE by three independent methods and demonstrate spin-torque (ST) switching of both out-of-plane and in-plane magnetized layers. We implement a three-terminal device that utilizes current passing through a low impedance Ta-ferromagnet bilayer to effect switching of a nanomagnet, with a higher-impedance magnetic tunnel junction for read-out. The efficiency and reliability of this device, together with its simplicity of fabrication, suggest that this three-terminal SHE-ST design can eliminate the main obstacles currently impeding the development of magnetic memory and non-volatile spin logic technologies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The emergence of spin electronics in data storage.

            Electrons have a charge and a spin, but until recently these were considered separately. In classical electronics, charges are moved by electric fields to transmit information and are stored in a capacitor to save it. In magnetic recording, magnetic fields have been used to read or write the information stored on the magnetization, which 'measures' the local orientation of spins in ferromagnets. The picture started to change in 1988, when the discovery of giant magnetoresistance opened the way to efficient control of charge transport through magnetization. The recent expansion of hard-disk recording owes much to this development. We are starting to see a new paradigm where magnetization dynamics and charge currents act on each other in nanostructured artificial materials. Ultimately, 'spin currents' could even replace charge currents for the transfer and treatment of information, allowing faster, low-energy operations: spin electronics is on its way.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Spin-dependent tunneling conductance ofFe|MgO|Fesandwiches

                Bookmark

                Author and article information

                Journal
                22 January 2013
                Article
                10.7567/APEX.7.103001
                1301.5374
                2402cd3c-44fb-4da2-863c-27d53fd6b2dc

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                16 pages, 5 figures
                cond-mat.mes-hall cond-mat.mtrl-sci

                Comments

                Comment on this article