27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      PKC activation sensitizes basal-like breast cancer cell lines to Smac mimetics

      research-article
      1 , 1 , 1 , 1 , *
      Cell Death Discovery
      Nature Publishing Group

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is a need for novel strategies to initiate cancer cell death. One approach is the use of Smac mimetics, which antagonize inhibitor of apoptosis proteins (IAPs). Recent studies have shown that combinations of Smac mimetics such as LBW242 or LCL161 in combination with chemotherapeutic agents increase cancer cell death. Here we show that the protein kinase C (PKC) activator TPA together with the Smac mimetic LBW242 induces cell death in two basal breast cancer cell lines (MDA-MB-468 and BT-549) that are resistant to Smac mimetic as single agent. Ten other LBW242-insensitive cancer cell lines were not influenced by the TPA+LBW242 combination. The TPA+LBW242 effect was suppressed by the PKC inhibitor GF109203X, indicating dependence on PKC enzymatic activity. The PKC effect was mediated via increased synthesis and release of TNF α, which can induce death in the presence of Smac mimetics. The cell death, coinciding with caspase-3 cleavage, was suppressed by caspase inhibition and preceded by the association of RIP1 with caspase-8, as seen in complex II formation. Smac mimetics, but not TPA, induced the non-canonical NF- κB pathway in both MDA-MB-231 and MDA-MB-468 cells. Blocking the canonical NF- κB pathway suppressed TPA induction of TNF α in MDA-MB-468 cells whereas isolated downregulation of either the canonical or non-canonical pathways did not abolish the Smac mimetic induction of the NF- κB driven genes TNF α and BIRC3 in MDA-MB-231 cells although the absolute levels were suppressed. A combined downregulation of the canonical and non-canonical pathways further suppressed TNF α levels and inhibited Smac mimetic-mediated cell death. Our data suggest that in certain basal breast cancer cell lines co-treatment of TPA with a Smac mimetic induces cell death highlighting the potential of using these pathways as molecular targets for basal-like breast cancers.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes.

          Apoptosis induced by TNF-receptor I (TNFR1) is thought to proceed via recruitment of the adaptor FADD and caspase-8 to the receptor complex. TNFR1 signaling is also known to activate the transcription factor NF-kappa B and promote survival. The mechanism by which this decision between cell death and survival is arbitrated is not clear. We report that TNFR1-induced apoptosis involves two sequential signaling complexes. The initial plasma membrane bound complex (complex I) consists of TNFR1, the adaptor TRADD, the kinase RIP1, and TRAF2 and rapidly signals activation of NF-kappa B. In a second step, TRADD and RIP1 associate with FADD and caspase-8, forming a cytoplasmic complex (complex II). When NF-kappa B is activated by complex I, complex II harbors the caspase-8 inhibitor FLIP(L) and the cell survives. Thus, TNFR1-mediated-signal transduction includes a checkpoint, resulting in cell death (via complex II) in instances where the initial signal (via complex I, NF-kappa B) fails to be activated.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy.

            Apoptosis or programmed cell death is a key regulator of physiological growth control and regulation of tissue homeostasis. One of the most important advances in cancer research in recent years is the recognition that cell death mostly by apoptosis is crucially involved in the regulation of tumor formation and also critically determines treatment response. Killing of tumor cells by most anticancer strategies currently used in clinical oncology, for example, chemotherapy, gamma-irradiation, suicide gene therapy or immunotherapy, has been linked to activation of apoptosis signal transduction pathways in cancer cells such as the intrinsic and/or extrinsic pathway. Thus, failure to undergo apoptosis may result in treatment resistance. Understanding the molecular events that regulate apoptosis in response to anticancer chemotherapy, and how cancer cells evade apoptotic death, provides novel opportunities for a more rational approach to develop molecular-targeted therapies for combating cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis.

              Inhibitor of apoptosis (IAP) proteins are antiapoptotic regulators that block cell death in response to diverse stimuli. They are expressed at elevated levels in human malignancies and are attractive targets for the development of novel cancer therapeutics. Herein, we demonstrate that small-molecule IAP antagonists bind to select baculovirus IAP repeat (BIR) domains resulting in dramatic induction of auto-ubiquitination activity and rapid proteasomal degradation of c-IAPs. The IAP antagonists also induce cell death that is dependent on TNF signaling and de novo protein biosynthesis. Additionally, the c-IAP proteins were found to function as regulators of NF-kappaB signaling. Through their ubiquitin E3 ligase activities c-IAP1 and c-IAP2 promote proteasomal degradation of NIK, the central ser/thr kinase in the noncanonical NF-kappaB pathway.
                Bookmark

                Author and article information

                Journal
                Cell Death Discov
                Cell Death Discov
                Cell Death Discovery
                Nature Publishing Group
                2058-7716
                29 February 2016
                2016
                : 2
                : 16002
                Affiliations
                [1 ] Department of Laboratory Medicine, Translational Cancer Research, Lund University , Lund, Sweden
                Author notes
                Article
                cddiscovery20162
                10.1038/cddiscovery.2016.2
                4979953
                27551497
                2419edcc-afa2-4c2c-ac72-37cf9b88e546
                Copyright © 2016 Cell Death Differentiation Association

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 15 December 2015
                : 16 December 2015
                Categories
                Article

                Comments

                Comment on this article