27
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Journal of Pain Research (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on reporting of high-quality laboratory and clinical findings in all fields of pain research and the prevention and management of pain. Sign up for email alerts here.

      52,235 Monthly downloads/views I 2.832 Impact Factor I 4.5 CiteScore I 1.2 Source Normalized Impact per Paper (SNIP) I 0.655 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Detection of central circuits implicated in the formation of novel pain memories

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Being able to remember physically and emotionally painful events in one’s own past may shape behavior, and can create an aversion to a variety of situations. Pain imagination is a related process that may include recall of past experiences, in addition to production of sensory and emotional percepts without external stimuli. This study aimed to understand 1) the central nervous system processes that underlie pain imagination, 2) the retrieval of pain memories, and 3) to compare the latter with visual object memory. These goals were achieved by longitudinally investigating brain function with functional magnetic resonance imaging in a unique group of healthy volunteers who had never experienced tooth pain. In these subjects, we compared brain responses elicited during three experimental conditions in the following order: imagination of tooth pain (pain imagination), remembering one’s own house (object memory), and remembrance of tooth pain following an episode of induced acute tooth pain (pain memory). Key observations stemming from group-level conjunction analyses revealed common activation in the posterior parietal cortex for both pain imagination and pain memory, while object and pain memory each had strong activation predominantly within the middle frontal gyrus. When contrasting pain imagination and memory, significant activation differences were observed in subcortical structures (ie, parahippocampus − pain imagination > pain memory; midbrain − pain memory > pain imagination). Importantly, these findings were observed in the presence of consistent and reproducible psychophysical and behavioral measures that informed on the subjects’ ability to imagine novel and familiar thoughts, as well as the subjects’ pain perception.

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Interoception: the sense of the physiological condition of the body.

          Converging evidence indicates that primates have a distinct cortical image of homeostatic afferent activity that reflects all aspects of the physiological condition of all tissues of the body. This interoceptive system, associated with autonomic motor control, is distinct from the exteroceptive system (cutaneous mechanoreception and proprioception) that guides somatic motor activity. The primary interoceptive representation in the dorsal posterior insula engenders distinct highly resolved feelings from the body that include pain, temperature, itch, sensual touch, muscular and visceral sensations, vasomotor activity, hunger, thirst, and 'air hunger'. In humans, a meta-representation of the primary interoceptive activity is engendered in the right anterior insula, which seems to provide the basis for the subjective image of the material self as a feeling (sentient) entity, that is, emotional awareness.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Visual imagery differences in the recall of pictures.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functional connectivity of the insula in the resting brain.

              The human insula is hidden in the depth of the cerebral hemisphere by the overlying frontal and temporal opercula, and consists of three cytoarchitectonically distinct regions: the anterior agranular area, posterior granular area, and the transitional dysgranular zone; each has distinct histochemical staining patterns and specific connectivity. Even though there are several studies reporting the functional connectivity of the insula with the cingulated cortex, its relationships with other brain areas remain elusive in humans. Therefore, we decided to use resting state functional connectivity to elucidate in details its connectivity, in terms of cortical and subcortical areas, and also of lateralization. We investigated correlations in BOLD fluctuations between specific regions of interest of the insula and other brain areas of right-handed healthy volunteers, on both sides of the brain. Our findings document two major complementary networks involving the ventral-anterior and dorsal-posterior insula: one network links the anterior insula to the middle and inferior temporal cortex and anterior cingulate cortex, and is primarily related to limbic regions which play a role in emotional aspects; the second links the middle-posterior insula to premotor, sensorimotor, supplementary motor and middle-posterior cingulate cortices, indicating a role for the insula in sensorimotor integration. The clear bipartition of the insula was confirmed by negative correlation analysis. Correlation maps are partially lateralized: the salience network, related to the ventral anterior insula, displays stronger connections with the anterior cingulate cortex on the right side, and with the frontal cortex on the left side; the posterior network has stronger connections with the superior temporal cortex and the occipital cortex on the right side. These results are in agreement with connectivity studies in primates, and support the use of resting state functional analysis to investigate connectivity in the living human brain. Copyright © 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                J Pain Res
                J Pain Res
                Journal of Pain Research
                Dove Medical Press
                1178-7090
                2016
                15 September 2016
                : 9
                : 671-681
                Affiliations
                [1 ]Department of Neurology
                [2 ]Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, Mainz
                [3 ]Department of Neurophysiology, Center for Biomedicine and Medical Technology Mannheim (CBTM), Heidelberg University, Mannheim, Germany
                Author notes
                Correspondence: Frank Birklein, Universitätsmedizin, Klinik und Poliklinik für Neurologie, Johannes Gutenberg-Universität Mainz, 1 Langenbeckstrasse, Mainz 55131, Germany, Tel +49 6131 175 486, Fax +49 6131 175 625, Email Frank.Birklein@ 123456unimedizin-mainz.de
                Article
                jpr-9-671
                10.2147/JPR.S113436
                5029841
                27695361
                241b060b-714b-4d53-a101-e7d177996411
                © 2016 Upadhyay et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Anesthesiology & Pain management
                fmri,pain memory,pain imagination,object memory,tooth pain
                Anesthesiology & Pain management
                fmri, pain memory, pain imagination, object memory, tooth pain

                Comments

                Comment on this article