5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Inhaled steroids and risk of pneumonia for chronic obstructive pulmonary disease

      1 , 2

      Cochrane Airways Group

      Cochrane Database of Systematic Reviews

      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Inhaled corticosteroids (ICS) are anti-inflammatory drugs that have proven benefits for people with worsening symptoms of chronic obstructive pulmonary disease (COPD) and repeated exacerbations. They are commonly used as combination inhalers with long-acting beta2-agonists (LABA) to reduce exacerbation rates and all-cause mortality, and to improve lung function and quality of life. The most common combinations of ICS and LABA used in combination inhalers are fluticasone and salmeterol, budesonide and formoterol and a new formulation of fluticasone in combination with vilanterol, which is now available. ICS have been associated with increased risk of pneumonia, but the magnitude of risk and how this compares with different ICS remain unclear. Recent reviews conducted to address their safety have not compared the relative safety of these two drugs when used alone or in combination with LABA. To assess the risk of pneumonia associated with the use of fluticasone and budesonide for COPD. We identified trials from the Cochrane Airways Group Specialised Register of trials (CAGR), clinicaltrials.gov, reference lists of existing systematic reviews and manufacturer websites. The most recent searches were conducted in September 2013. We included parallel-group randomised controlled trials (RCTs) of at least 12 weeks' duration. Studies were included if they compared the ICS budesonide or fluticasone versus placebo, or either ICS in combination with a LABA versus the same LABA as monotherapy for people with COPD. Two review authors independently extracted study characteristics, numerical data and risk of bias information for each included study.We looked at direct comparisons of ICS versus placebo separately from comparisons of ICS/LABA versus LABA for all outcomes, and we combined these with subgroups when no important heterogeneity was noted. After assessing for transitivity, we conducted an indirect comparison to compare budesonide versus fluticasone monotherapy, but we could not do the same for the combination therapies because of systematic differences between the budesonide and fluticasone combination data sets.When appropriate, we explored the effects of ICS dose, duration of ICS therapy and baseline severity on the primary outcome. Findings of all outcomes are presented in 'Summary of findings' tables using GRADEPro. We found 43 studies that met the inclusion criteria, and more evidence was provided for fluticasone (26 studies; n = 21,247) than for budesonide (17 studies; n = 10,150). Evidence from the budesonide studies was more inconsistent and less precise, and the studies were shorter. The populations within studies were more often male with a mean age of around 63, mean pack-years smoked over 40 and mean predicted forced expiratory volume of one second (FEV1) less than 50%.High or uneven dropout was considered a high risk of bias in almost 40% of the trials, but conclusions for the primary outcome did not change when the trials at high risk of bias were removed in a sensitivity analysis.Fluticasone increased non-fatal serious adverse pneumonia events (requiring hospital admission) (odds ratio (OR) 1.78, 95% confidence interval (CI) 1.50 to 2.12; 18 more per 1000 treated over 18 months; high quality), and no evidence suggested that this outcome was reduced by delivering it in combination with salmeterol or vilanterol (subgroup differences: I(2) = 0%, P value 0.51), or that different doses, trial duration or baseline severity significantly affected the estimate. Budesonide also increased non-fatal serious adverse pneumonia events compared with placebo, but the effect was less precise and was based on shorter trials (OR 1.62, 95% CI 1.00 to 2.62; six more per 1000 treated over nine months; moderate quality). Some of the variation in the budesonide data could be explained by a significant difference between the two commonly used doses: 640 mcg was associated with a larger effect than 320 mcg relative to placebo (subgroup differences: I(2) = 74%, P value 0.05).An indirect comparison of budesonide versus fluticasone monotherapy revealed no significant differences with respect to serious adverse events (pneumonia-related or all-cause) or mortality. The risk of any pneumonia event (i.e. less serious cases treated in the community) was higher with fluticasone than with budesonide (OR 1.86, 95% CI 1.04 to 3.34); this was the only significant difference reported between the two drugs. However, this finding should be interpreted with caution because of possible differences in the assignment of pneumonia diagnosis, and because no trials directly compared the two drugs.No significant difference in overall mortality rates was observed between either of the inhaled steroids and the control interventions (both high-quality evidence), and pneumonia-related deaths were too rare to permit conclusions to be drawn. Budesonide and fluticasone, delivered alone or in combination with a LABA, are associated with increased risk of serious adverse pneumonia events, but neither significantly affected mortality compared with controls. The safety concerns highlighted in this review should be balanced with recent cohort data and established randomised evidence of efficacy regarding exacerbations and quality of life. Comparison of the two drugs revealed no statistically significant difference in serious pneumonias, mortality or serious adverse events. Fluticasone was associated with higher risk of any pneumonia when compared with budesonide (i.e. less serious cases dealt with in the community), but variation in the definitions used by the respective manufacturers is a potential confounding factor in their comparison.Primary research should accurately measure pneumonia outcomes and should clarify both the definition and the method of diagnosis used, especially for new formulations such as fluticasone furoate, for which little evidence of the associated pneumonia risk is currently available. Similarly, systematic reviews and cohorts should address the reliability of assigning 'pneumonia' as an adverse event or cause of death and should determine how this affects the applicability of findings.

          Related collections

          Most cited references 105

          • Record: found
          • Abstract: found
          • Article: not found

          Randomised, double blind, placebo controlled study of fluticasone propionate in patients with moderate to severe chronic obstructive pulmonary disease: the ISOLDE trial.

          To determine the effect of long term inhaled corticosteroids on lung function, exacerbations, and health status in patients with moderate to severe chronic obstructive pulmonary disease. Double blind, placebo controlled study. Eighteen UK hospitals. 751 men and women aged between 40 and 75 years with mean forced expiratory volume in one second (FEV(1)) 50% of predicted normal. Inhaled fluticasone propionate 500 microgram twice daily from a metered dose inhaler or identical placebo. Efficacy measures: rate of decline in FEV(1) after the bronchodilator and in health status, frequency of exacerbations, respiratory withdrawals. Safety measures: morning serum cortisol concentration, incidence of adverse events. There was no significant difference in the annual rate of decline in FEV(1 )(P=0.16). Mean FEV(1) after bronchodilator remained significantly higher throughout the study with fluticasone propionate compared with placebo (P<0.001). Median exacerbation rate was reduced by 25% from 1.32 a year on placebo to 0.99 a year on with fluticasone propionate (P=0.026). Health status deteriorated by 3.2 units a year on placebo and 2.0 units a year on fluticasone propionate (P=0.0043). Withdrawals because of respiratory disease not related to malignancy were higher in the placebo group (25% v 19%, P=0.034). Fluticasone propionate 500 microgram twice daily did not affect the rate of decline in FEV(1) but did produce a small increase in FEV(1). Patients on fluticasone propionate had fewer exacerbations and a slower decline in health status. These improvements in clinical outcomes support the use of this treatment in patients with moderate to severe chronic obstructive pulmonary disease.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Cochrane Handbook for Systematic Reviews of Interventions

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Maintenance therapy with budesonide and formoterol in chronic obstructive pulmonary disease.

              Lung function in chronic obstructive pulmonary disease (COPD) can be improved acutely by oral corticosteroids and bronchodilators. Whether clinical improvement can be maintained by subsequent inhaled therapy is unknown. COPD patients (n=1,022, mean prebronchodilator forced expiratory volume in one second (FEV1) 36% predicted) initially received formoterol (9 microg b.i.d.) and oral prednisolone (30 mg o.d.) for 2 weeks. After this time, patients were randomised to b.i.d. inhaled budesonide/formoterol 320/9 microg, budesonide 400 microg, formoterol 9 microg or placebo for 12 months. Postmedication FEV1 improved by 0.21 L and health-related quality of life using the St George's Respiratory Questionnaire (SGRQ) by 4.5 units after run-in. Fewer patients receiving budesonide/formoterol withdrew from the study than those receiving budesonide, formoterol or placebo. Budesonide/formoterol patients had a prolonged time to first exacerbation (254 versus 96 days) and maintained higher FEV1 (99% versus 87% of baseline), both primary variables versus placebo. They had fewer exacerbations (1.38 versus 1.80 exacerbations per patient per year), had higher prebronchodilator peak expiratory flow, and showed clinically relevant improvements in SGRQ versus placebo (-7.5 units). Budesonide/formoterol was more effective than either monocomponent in both primary variables. Budesonide/formoterol in a single inhaler (Symbicort) maintains the benefit of treatment optimisation, stabilising lung function and delaying exacerbations more effectively than either component drug alone or placebo.
                Bookmark

                Author and article information

                Journal
                Cochrane Database of Systematic Reviews
                Wiley
                14651858
                March 10 2014
                Affiliations
                [1 ]St George's, University of London; Population Health Research Institute; Cranmer Terrace London UK SW17 0RE
                [2 ]Grodno Clinic Hospital #2; 3, ul. Transportnaya Grodno Belarus PO Box 230020
                Article
                10.1002/14651858.CD010115.pub2
                24615270
                © 2014
                Product

                Comments

                Comment on this article