16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      H5N1 Influenza A Virus PB1-F2 Relieves HAX-1-Mediated Restriction of Avian Virus Polymerase PA in Human Lung Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Highly pathogenic influenza A viruses (IAV) from avian hosts were first reported to directly infect humans 20 years ago. However, such infections are rare events, and our understanding of factors promoting or restricting zoonotic transmission is still limited. One accessory protein of IAV, PB1-F2, was associated with pathogenicity of pandemic and zoonotic IAV. This short (90-amino-acid) peptide does not harbor an enzymatic function. We thus identified host factors interacting with H5N1 PB1-F2, which could explain its importance for virulence. PB1-F2 binds to HCLS1-associated protein X1 (HAX-1), a recently identified host restriction factor of the PA subunit of IAV polymerase complexes. We demonstrate that the PA of a mammal-adapted H1N1 IAV is resistant to HAX-1 imposed restriction, while the PA of an avian-origin H5N1 IAV remains sensitive. We also showed HAX-1 sensitivity for PAs of A/Brevig Mission/1/1918 (H1N1) and A/Shanghai/1/2013 (H7N9), two avian-origin zoonotic IAV. Inhibition of H5N1 polymerase by HAX-1 can be alleviated by its PB1-F2 through direct competition. Accordingly, replication of PB1-F2-deficient H5N1 IAV is attenuated in the presence of large amounts of HAX-1. Mammal-adapted H1N1 and H3N2 viruses do not display this dependence on PB1-F2 for efficient replication in the presence of HAX-1. We propose that PB1-F2 plays a key role in zoonotic transmission of avian H5N1 IAV into humans.

          IMPORTANCE Aquatic and shore birds are the natural reservoir of influenza A viruses from which the virus can jump into a variety of bird and mammal host species, including humans. H5N1 influenza viruses are a good model for this process. They pose an ongoing threat to human and animal health due to their high mortality rates. However, it is currently unclear what restricts these interspecies jumps on the host side or what promotes them on the virus side. Here we show that a short viral peptide, PB1-F2, helps H5N1 bird influenza viruses to overcome a human restriction factor of the viral polymerase complex HAX-1. Interestingly, we found that human influenza A virus polymerase complexes are already adapted to HAX-1 and do not require this function of PB1-F2. We thus propose that a functional full-length PB1-F2 supports direct transmission of bird viruses into humans.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          The CRAPome: a Contaminant Repository for Affinity Purification Mass Spectrometry Data

          Affinity purification coupled with mass spectrometry (AP-MS) is now a widely used approach for the identification of protein-protein interactions. However, for any given protein of interest, determining which of the identified polypeptides represent bona fide interactors versus those that are background contaminants (e.g. proteins that interact with the solid-phase support, affinity reagent or epitope tag) is a challenging task. While the standard approach is to identify nonspecific interactions using one or more negative controls, most small-scale AP-MS studies do not capture a complete, accurate background protein set. Fortunately, negative controls are largely bait-independent. Hence, aggregating negative controls from multiple AP-MS studies can increase coverage and improve the characterization of background associated with a given experimental protocol. Here we present the Contaminant Repository for Affinity Purification (the CRAPome) and describe the use of this resource to score protein-protein interactions. The repository (currently available for Homo sapiens and Saccharomyces cerevisiae) and computational tools are freely available online at www.crapome.org.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit.

            The influenza virus polymerase, a heterotrimer composed of three subunits, PA, PB1 and PB2, is responsible for replication and transcription of the eight separate segments of the viral RNA genome in the nuclei of infected cells. The polymerase synthesizes viral messenger RNAs using short capped primers derived from cellular transcripts by a unique 'cap-snatching' mechanism. The PB2 subunit binds the 5' cap of host pre-mRNAs, which are subsequently cleaved after 10-13 nucleotides by the viral endonuclease, hitherto thought to reside in the PB2 (ref. 5) or PB1 (ref. 2) subunits. Here we describe biochemical and structural studies showing that the amino-terminal 209 residues of the PA subunit contain the endonuclease active site. We show that this domain has intrinsic RNA and DNA endonuclease activity that is strongly activated by manganese ions, matching observations reported for the endonuclease activity of the intact trimeric polymerase. Furthermore, this activity is inhibited by 2,4-dioxo-4-phenylbutanoic acid, a known inhibitor of the influenza endonuclease. The crystal structure of the domain reveals a structural core closely resembling resolvases and type II restriction endonucleases. The active site comprises a histidine and a cluster of three acidic residues, conserved in all influenza viruses, which bind two manganese ions in a configuration similar to other two-metal-dependent endonucleases. Two active site residues have previously been shown to specifically eliminate the polymerase endonuclease activity when mutated. These results will facilitate the optimisation of endonuclease inhibitors as potential new anti-influenza drugs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host.

              Mammalian influenza viruses are descendants of avian strains that crossed the species barrier and underwent further adaptation. Since 1997 in southeast Asia, H5N1 highly pathogenic avian influenza viruses have been causing severe, even fatal disease in humans. Although no lineages of this subtype have been established until now, such repeated events may initiate a new pandemic. As a model of species transmission, we used the highly pathogenic avian influenza virus SC35 (H7N7), which is low-pathogenic for mice, and its lethal mouse-adapted descendant SC35M. Specific mutations in SC35M polymerase considerably increase its activity in mammalian cells, correlating with high virulence in mice. Some of these mutations are prevalent in chicken and mammalian isolates, especially in the highly pathogenic H5N1 viruses from southeast Asia. These activity-enhancing mutations of the viral polymerase complex demonstrate convergent evolution in nature and, therefore, may be a prerequisite for adaptation to a new host paving the way for new pandemic viruses.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                J Virol
                J. Virol
                jvi
                jvi
                JVI
                Journal of Virology
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                0022-538X
                1098-5514
                21 March 2018
                14 May 2018
                1 June 2018
                14 May 2018
                : 92
                : 11
                : e00425-18
                Affiliations
                [a ]Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
                [b ]Institute of Virology and Immunology, Bern & Mittelhausern, Switzerland
                [c ]Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
                St. Jude Children's Research Hospital
                Author notes
                Address correspondence to M. Schmolke, mirco.schmolke@ 123456unige.ch .

                Citation Mazel-Sanchez B, Boal-Carvalho I, Silva F, Dijkman R, Schmolke M. 2018. H5N1 influenza A virus PB1-F2 relieves HAX-1-mediated restriction of avian virus polymerase PA in human lung cells. J Virol 92:e00425-18. https://doi.org/10.1128/JVI.00425-18.

                Article
                00425-18
                10.1128/JVI.00425-18
                5952157
                29563290
                2440b09a-fdfc-4829-9d05-114535b3cf14
                Copyright © 2018 Mazel-Sanchez et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

                History
                : 12 March 2018
                : 14 March 2018
                Page count
                supplementary-material: 2, Figures: 8, Tables: 0, Equations: 0, References: 50, Pages: 17, Words: 9605
                Funding
                Funded by: Swiss National Fund;
                Award ID: 310030_155949
                Award Recipient :
                Funded by: Novartis Consumer Health;
                Award Recipient :
                Categories
                Cellular Response to Infection
                Custom metadata
                June 2018

                Microbiology & Virology
                h5n1,hax-1,influenza a virus,pa,pb1-f2,polymerases,zoonosis
                Microbiology & Virology
                h5n1, hax-1, influenza a virus, pa, pb1-f2, polymerases, zoonosis

                Comments

                Comment on this article