59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparative gain-of-function effects of the KCNMA1-N999S mutation on human BK channel properties

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          KCNMA1, encoding the voltage- and calcium-activated potassium channel, has a pivotal role in brain physiology. Mutations in KCNMA1 are associated with epilepsy and/or dyskinesia (PNKD3). Two KCNMA1 mutations correlated with these phenotypes, D434G and N999S, were previously identified as producing gain-of-function (GOF) effects on BK channel activity. Three new patients have been reported harboring N999S, one carrying a second mutation, R1128W, but the effects of these mutations have not yet been reported under physiological K + conditions or compared to D434G. In this study, we characterize N999S, the novel N999S/R1128W double mutation, and D434G in a brain BK channel splice variant, comparing the effects on BK current properties under a physiological K + gradient with action potential voltage commands. N999S, N999S/R1128W, and D434G cDNAs were expressed in HEK293T cells and characterized by patch-clamp electrophysiology. N999S BK currents were shifted to negative potentials, with faster activation and slower deactivation compared with wild type (WT) and D434G. The double mutation N999S/R1128W did not show any additional changes in current properties compared with N999S alone. The antiepileptic drug acetazolamide was assessed for its ability to directly modulate WT and N999S channels. Neither the WT nor N999S channels were sensitive to the antiepileptic drug acetazolamide, but both were sensitive to the inhibitor paxilline. We conclude that N999S is a strong GOF mutation that surpasses the D434G phenotype, without mitigation by R1128W. Acetazolamide has no direct modulatory action on either WT or N999S channels, indicating that its use may not be contraindicated in patients harboring GOF KCNMA1 mutations.

          NEW & NOTEWORTHY KCNMA1-linked channelopathy is a new neurological disorder characterized by mutations in the BK voltage- and calcium-activated potassium channel. The epilepsy- and dyskinesia-associated gain-of-function mutations N999S and D434G comprise the largest number of patients in the cohort. This study provides the first direct comparison between D434G and N999S BK channel properties as well as a novel double mutation, N999S/R1128W, from another patient, defining the functional effects during an action potential stimulus.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Coupling between Voltage Sensor Activation, Ca2+ Binding and Channel Opening in Large Conductance (BK) Potassium Channels

          To determine how intracellular Ca2+ and membrane voltage regulate the gating of large conductance Ca2+-activated K+ (BK) channels, we examined the steady-state and kinetic properties of mSlo1 ionic and gating currents in the presence and absence of Ca2+ over a wide range of voltage. The activation of unliganded mSlo1 channels can be accounted for by allosteric coupling between voltage sensor activation and the closed (C) to open (O) conformational change (Horrigan, F.T., and R.W. Aldrich. 1999. J. Gen. Physiol. 114:305–336; Horrigan, F.T., J. Cui, and R.W. Aldrich. 1999. J. Gen. Physiol. 114:277–304). In 0 Ca2+, the steady-state gating charge-voltage (QSS-V) relationship is shallower and shifted to more negative voltages than the conductance-voltage (GK-V) relationship. Calcium alters the relationship between Q-V and G-V, shifting both to more negative voltages such that they almost superimpose in 70 μM Ca2+. This change reflects a differential effect of Ca2+ on voltage sensor activation and channel opening. Ca2+ has only a small effect on the fast component of ON gating current, indicating that Ca2+ binding has little effect on voltage sensor activation when channels are closed. In contrast, open probability measured at very negative voltages (less than −80 mV) increases more than 1,000-fold in 70 μM Ca2+, demonstrating that Ca2+ increases the C-O equilibrium constant under conditions where voltage sensors are not activated. Thus, Ca2+ binding and voltage sensor activation act almost independently, to enhance channel opening. This dual-allosteric mechanism can reproduce the steady-state behavior of mSlo1 over a wide range of conditions, with the assumption that activation of individual Ca2+ sensors or voltage sensors additively affect the energy of the C-O transition and that a weak interaction between Ca2+ sensors and voltage sensors occurs independent of channel opening. By contrast, macroscopic IK kinetics indicate that Ca2+ and voltage dependencies of C-O transition rates are complex, leading us to propose that the C-O conformational change may be described by a complex energy landscape.
            • Record: found
            • Abstract: found
            • Article: not found

            Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder.

            The large conductance calcium-sensitive potassium (BK) channel is widely expressed in many organs and tissues, but its in vivo physiological functions have not been fully defined. Here we report a genetic locus associated with a human syndrome of coexistent generalized epilepsy and paroxysmal dyskinesia on chromosome 10q22 and show that a mutation of the alpha subunit of the BK channel causes this syndrome. The mutant BK channel had a markedly greater macroscopic current. Single-channel recordings showed an increase in open-channel probability due to a three- to fivefold increase in Ca(2+) sensitivity. We propose that enhancement of BK channels in vivo leads to increased excitability by inducing rapid repolarization of action potentials, resulting in generalized epilepsy and paroxysmal dyskinesia by allowing neurons to fire at a faster rate. These results identify a gene that is mutated in generalized epilepsy and paroxysmal dyskinesia and have implications for the pathogenesis of human epilepsy, the neurophysiology of paroxysmal movement disorders and the role of BK channels in neurological disease.
              • Record: found
              • Abstract: found
              • Article: not found

              Cloning and functional characterization of novel large conductance calcium-activated potassium channel beta subunits, hKCNMB3 and hKCNMB4.

              We present the cloning and characterization of two novel calcium-activated potassium channel beta subunits, hKCNMB3 and hKCNMB4, that are enriched in the testis and brain, respectively. We compare and contrast the steady state and kinetic properties of these beta subunits with the previously cloned mouse beta1 (mKCNMB1) and the human beta2 subunit (hKCNMB2). Once inactivation is removed, we find that hKCNMB2 has properties similar to mKCNMB1. hKCNMB2 slows Hslo1 channel gating and shifts the current-voltage relationship to more negative potentials. hKCNMB3 and hKCNMB4 have distinct effects on slo currents not observed with mKCNMB1 and hKCNMB2. Although we found that hKCNMB3 does interact with Hslo channels, its effects on Hslo1 channel properties were slight, increasing Hslo1 activation rates. In contrast, hKCNMB4 slows Hslo1 gating kinetics, and modulates the apparent calcium sensitivity of Hslo1. We found that the different effects of the beta subunits on some Hslo1 channel properties are calcium-dependent. mKCNMB1 and hKCNMB2 slow activation at 1 microM but not at 10 microM free calcium concentrations. hKCNMB4 decreases Hslo1 channel openings at low calcium concentrations but increases channel openings at high calcium concentrations. These results suggest that beta subunits in diverse tissue types fine-tune slo channel properties to the needs of a particular cell.

                Author and article information

                Journal
                J Neurophysiol
                J. Neurophysiol
                jn
                J Neurophysiol
                JN
                Journal of Neurophysiology
                American Physiological Society (Bethesda, MD )
                0022-3077
                1522-1598
                1 February 2020
                18 December 2019
                18 December 2019
                : 123
                : 2
                : 560-570
                Affiliations
                [1] 1Department of Physiology, University of Maryland School of Medicine , Baltimore, Maryland
                [2] 2Program in Neuroscience, University of Maryland School of Medicine , Baltimore, Maryland
                Author notes
                Address for reprint requests and other correspondence: A. L. Meredith, Dept. of Physiology, Univ. of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201 (e-mail: ameredith@ 123456som.umaryland.edu ).
                Author information
                https://orcid.org/0000-0003-1061-2302
                Article
                JN-00626-2019 JN-00626-2019
                10.1152/jn.00626.2019
                7052641
                31851553
                24431e01-35b5-4b26-9765-3416e26f61f7
                Copyright © 2020 the American Physiological Society

                Licensed under Creative Commons Attribution CC-BY 4.0: © the American Physiological Society.

                History
                : 1 October 2019
                : 13 December 2019
                : 17 December 2019
                Funding
                Funded by: HHS | NIH | National Heart, Lung, and Blood Institute (NHBLI) 10.13039/100000050
                Award ID: R01-HL102758
                Funded by: HHS | NIH | National Institute of General Medical Sciences (NIGMS) 10.13039/100000057
                Award ID: T32-GM008181
                Funded by: American Physical Society (APS) 10.13039/100005460
                Award ID: Ryuji Ueno award
                Award ID: sponsored by the S & R Foundation
                Categories
                Research Article
                Nervous System Pathophysiology

                Neurology
                bk channel,calcium-activated potassium channel,channelopathy,human mutations,seizure
                Neurology
                bk channel, calcium-activated potassium channel, channelopathy, human mutations, seizure

                Comments

                Comment on this article

                Related Documents Log