+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found

      Expression of Melanocortin MC3 and MC4 Receptor mRNAs by Neuropeptide Y Neurons in the Rat Arcuate Nucleus

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Neuropeptide Y (NPY) and α-melanocyte-stimulating hormone (α-MSH), two neuropeptides that are synthesized in neurons of the arcuate nucleus of the hypothalamus, exert opposite actions on food intake and body weight. NPY is orexigenic and decreases energy expenditure whereas α-MSH reduces food consumption and stimulates catabolism. α-MSH is an endogenous ligand for the central melanocortin receptors, MC3-R and MC4-R. In order to determine whether α-MSH may act directly on NPY neurons in the arcuate nucleus, we have investigated the possible occurrence of MC3-R and MC4-R mRNA in NPY-expressing cell bodies in the rat hypothalamus. Double-labeling in situ hybridization histochemistry using <sup>35</sup>S-labeled (MC3-R or MC4-R) and digoxigenin-labeled (NPY) riboprobes revealed that 38 ± 1% of the NPY mRNA-positive perikarya expressed MC3-R mRNA while only 9 ± 2% of the NPY-producing neurons contained MC4-R mRNA. The proportions of NPY neurons that express MC3-R mRNA or MC4-R mRNA were not significatively different in the anterior and posterior aspects of the arcuate nucleus. The present study shows that a large proportion of NPY neurons in the rat hypothalamus express MC3-R mRNA while a much lower number of NPY neurons express MC4-R mRNA, suggesting that melanocortins may directly modulate the activity of the hypothalamic NPY system, mainly through activation of MC3-R. These data provide additional evidence for the complex interactions between the stimulatory (NPY) and inhibitory (α-MSH) pathways controlling feeding behavior and energy homeostasis.

          Related collections

          Most cited references 28

          • Record: found
          • Abstract: found
          • Article: not found

          The role of neuropeptide Y in the antiobesity action of the obese gene product.

          Recently Zhang et al. cloned a gene that is expressed only in adipose tissue of the mouse. The obese phenotype of the ob/ob mouse is linked to a mutation in the obese gene that results in expression of a truncated inactive protein. Human and rat homologues for this gene are known. Previous experiments predict such a hormone to have a hypothalamic target. Hypothalamic neuropeptide Y stimulates food intake, decreases thermogenesis, and increases plasma insulin and corticosterone levels making it a potential target. Here we express the obese protein in Escherichia coli and find that it suppresses food intake and decreases body weight dramatically when administered to normal and ob/ob mice but not db/db (diabetic) mice, which are thought to lack the appropriate receptor. High-affinity binding was detected in the rat hypothalamus. One mechanism by which this protein regulated food intake and metabolism was inhibition of neuropeptide-Y synthesis and release.
            • Record: found
            • Abstract: found
            • Article: not found

            Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin.

            Pro-opiomelanocortin (POMC)-derived peptides (the melanocortins adrenocorticotropin, alpha-, beta- and gamma-melanocyte stimulating hormone; and the endogenous opioid beta-endorphin) have a diverse array of biological activities, including roles in pigmentation, adrenocortical function and regulation of energy stores, and in the immune system and the central and peripheral nervous systems. We show here that mice lacking the POMC-derived peptides have obesity, defective adrenal development and altered pigmentation. This phenotype is similar to that of the recently identified human POMC-deficient patients. When treated with a stable alpha-melanocyte-stimulating hormone agonist, mutant mice lost more than 40% of their excess weight after 2 weeks. Our results identify the POMC-null mutant mouse as a model for studying the human POMC-null syndrome, and indicate the therapeutic use of peripheral melanocortin in the treatment of obesity.
              • Record: found
              • Abstract: found
              • Article: not found

              Agouti protein is an antagonist of the melanocyte-stimulating-hormone receptor.

              The genetic loci agouti and extension control the relative amounts of eumelanin (brown-black) and phaeomelanin (yellow-red) pigments in mammals: extension encodes the receptor for melanocyte-stimulating hormone (MSH) and agouti encodes a novel 131-amino-acid protein containing a signal sequence. Agouti, which is produced in the hair follicle, acts on follicular melanocytes to inhibit alpha-MSH-induced eumelanin production, resulting in the subterminal band of phaeomelanin often visible in mammalian fur. Here we use partially purified agouti protein to demonstrate that agouti is a high-affinity antagonist of the MSH receptor and blocks alpha-MSH stimulation of adenylyl cyclase, the effector through which alpha-MSH induces eumelanin synthesis. Agouti was also found to be an antagonist of the melanocortin-4 receptor, a related MSH-binding receptor. Consequently, the obesity caused by ectopic expression of agouti in the lethal yellow (Ay) mouse may be due to the inhibition of melanocortin receptor(s) outside the hair follicle.

                Author and article information

                S. Karger AG
                May 2006
                08 May 2006
                : 82
                : 3-4
                : 164-170
                Laboratory of Cellular and Molecular Neuroendocrinology, European Institute for Peptide Research, UA CNRS, University of Rouen, Mont-Saint-Aignan, France
                91737 Neuroendocrinology 2005;82:164–170
                © 2005 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 4, References: 40, Pages: 7
                Original Paper


                Comment on this article