11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Phytochemical Constituent, (E)-Methyl-Cinnamate Isolated from Alpinia katsumadai Hayata Suppresses Cell Survival, Migration, and Differentiation in Pre-Osteoblasts

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: (E)-methyl-cinnamate (EMC), a phytochemical constituent isolated from Alpinia katsumadai Hayata, is a natural flavor compound with anti-inflammatory properties, which is widely used in the food and commodity industry. However, the pharmacological effects of methyl-cinnamate on pre-osteoblasts remain unknown. This study aimed to investigate the pharmacological effects and mechanisms of EMC in pre-osteoblast MC3T3-E1 cells (pre-osteoblasts). Methods: Cell viability and apoptosis were evaluated using the MTT assay and TUNEL staining. Cell migration and osteoblast differentiation were examined using migration assays, as well as alkaline phosphatase activity and staining assays. Western blot analysis was used to examine intracellular signaling pathways and apoptotic proteins. Results: EMC decreased cell viability with morphological changes and increased apoptosis in pre-osteoblasts. EMC also induced the cleavage of Poly (ADP-ribose) polymerase (PARP) and caspase-3 and reduced the expression of anti-apoptotic proteins. In addition, EMC increased TUNEL-positive cells in pre-osteoblasts, decreased the activation of mitogen-activated protein kinases, and suppressed cell migration rate in pre-osteoblasts. Subsequently, EMC inhibited the osteoblast differentiation of pre-osteoblasts, as assessed by alkaline phosphatase staining and activity assays. Conclusion: These findings demonstrate that EMC has a pharmacological and biological role in cell survival, migration, and osteoblast differentiation. It suggests that EMC might be a potential phytomedicine for treating abnormalities of osteoblast function in bone diseases.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis.

          The adult skeleton regenerates by temporary cellular structures that comprise teams of juxtaposed osteoclasts and osteoblasts and replace periodically old bone with new. A considerable body of evidence accumulated during the last decade has shown that the rate of genesis of these two highly specialized cell types, as well as the prevalence of their apoptosis, is essential for the maintenance of bone homeostasis; and that common metabolic bone disorders such as osteoporosis result largely from a derangement in the birth or death of these cells. The purpose of this article is 3-fold: 1) to review the role and the molecular mechanism of action of regulatory molecules, such as cytokines and hormones, in osteoclast and osteoblast birth and apoptosis; 2) to review the evidence for the contribution of changes in bone cell birth or death to the pathogenesis of the most common forms of osteoporosis; and 3) to highlight the implications of bone cell birth and death for a better understanding of the mechanism of action and efficacy of present and future pharmacotherapeutic agents for osteoporosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reaching a genetic and molecular understanding of skeletal development.

            In the last ten years, we have made considerable progress in our genetic and molecular understanding of all aspects of skeletal development, chondrogenesis, joint formation, and osteogenesis. This review addresses the role of the principal growth factors and transcription factors affecting these different processes and presents, in several cases, the genetic cascade leading to cell differentiation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genetic control of bone formation.

              In the past few years, our molecular understanding of bone formation has continued to increase. This review aims to present a comprehensive view of the current state of knowledge in the field. Thus, it will cover our current knowledge of chondrogenesis and osteoblastogenesis. It will also cover the most salient aspects of osteoblast function.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                24 May 2020
                May 2020
                : 21
                : 10
                : 3700
                Affiliations
                [1 ]Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02453, Korea; rudfks282@ 123456naver.com
                [2 ]National Development Institute of Korean Medicine, Gyeongsan 38540, Korea; iiihanna@ 123456nikom.or.kr (H.L.); meanglae@ 123456nikom.or.kr (M.C.)
                Author notes
                [* ]Correspondence: yunhm@ 123456khu.ac.kr ; Tel.: +82-02-961-0691; Fax: +82-02-960-1457
                Article
                ijms-21-03700
                10.3390/ijms21103700
                7279157
                32456334
                2452f389-e97e-4e35-9eab-9a3d0e44e523
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 15 April 2020
                : 19 May 2020
                Categories
                Article

                Molecular biology
                phytomedicine,alpinia katsumadai hayata,(e)-methyl-cinnamate,osteoblast,apoptosis,mapks

                Comments

                Comment on this article