32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Desmosomal Cadherins Are Decreased in Explanted Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy Patient Hearts

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aims

          Arrhythmogenic right ventricular Dysplasia/cardiomyopathy (ARVD/C) is an autosomal dominant inherited cardiomyopathy associated with ventricular arrhythmia, heart failure and sudden death. Genetic studies have demonstrated the central role of desmosomal proteins in this disease, where 50% of patients harbor a mutation in a desmosmal gene. However, clinical diagnosis of the disease remains difficult and molecular mechanisms appears heterogeneous and poorly understood. The aim of this study was to characterize the expression profile of desmosomal proteins in explanted ARVD/C heart samples, in order to identify common features of the disease.

          Methods and Results

          We examined plakophilin-2, desmoglein-2, desmocollin-2, plakoglobin and β-catenin protein expression levels from seven independent ARVD/C heart samples compared to two ischemic, five dilated cardiomyopathy and one healthy heart sample as controls. Ventricular and septum sections were examined by immunoblot analysis of total heart protein extracts and by immunostaining.

          Immunoblots indicated significant decreases in desmoglein-2 and desmocollin-2, independent of any known underlying mutations, whereas immune-histochemical analysis showed normal localization of all desmosomal proteins. Quantitative RT-PCR revealed normal DSG2 and DSC2 mRNA transcript levels, suggesting increased protein turn-over rather than transcriptional down regulation.

          Conclusion

          Reduced cardiac desmoglein-2 and desmocollin-2 levels appear to be specifically associated with ARVD/C, independent of underlying mutations. These findings highlight a key role of desmosomal cadherins in the pathophysiology of ARVD/C. Whether these reductions could be considered as specific markers for ARVD/C requires replication analysis.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs

          Cellular reprogramming of somatic cells to patient-specific induced pluripotent stem cells (iPSCs) enables in-vitro modelling of human genetic disorders for pathogenic investigations and therapeutic screens 1–7 . However, using iPSC-derived cardiomyocytes (iPSC-CMs) to model an adult-onset heart disease remains challenging due to the uncertainty regarding the ability of relatively immature iPSC-CMs to fully recapitulate adult disease phenotypes. Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) is an inherited heart disease characterized by pathological fatty infiltration and cardiomyocyte loss predominantly in the right ventricle (RV) 8 , which is associated with life-threatening ventricular arrhythmias. Over 50% of affected individuals have desmosome gene mutations, most commonly in PKP2 encoding plakophilin-2 9 . The median age at presentation of ARVD/C is 26 years 8 . We used Yamanaka’s methods 1,10 to generate iPSC lines from fibroblasts of two patients with ARVD/C and PKP2 mutations 11,12 . Mutant PKP2 iPSC-CMs demonstrate abnormal plakoglobin nuclear translocation and decreased β-catenin activity 13 in cardiogenic conditions; yet these abnormal features are insufficient to reproduce the pathological phenotypes of ARVD/C in standard cardiogenic conditions. Here we show that induction of adult-like metabolic energetics from an embryonic/glycolytic state and abnormal peroxisome proliferator-activated receptor-gamma (PPARγ) activation underlie the pathogenesis of ARVD/C. By coactivating normal PPAR-alpha (PPARα)-dependent metabolism and abnormal PPARγ pathway in beating embryoid bodies (EBs) with defined media, we established an efficient ARVD/C in-vitro model within two months. This model manifests exaggerated lipogenesis and apoptosis in mutant PKP2 iPSC-CMs. iPSC-CMs with a homozygous PKP2 mutation also displayed calcium-handling deficits. Our study is the first to demonstrate that induction of adult-like metabolism plays a critical role in establishing an adult-onset disease model using patient-specific iPSCs. Using this model, we revealed crucial pathogenic insights that metabolic derangement in adult-like metabolic milieu underlies ARVD/C pathologies, enabling us to propose novel disease-modifying therapeutic strategies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Suppression of canonical Wnt/beta-catenin signaling by nuclear plakoglobin recapitulates phenotype of arrhythmogenic right ventricular cardiomyopathy.

            Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVC) is a genetic disease caused by mutations in desmosomal proteins. The phenotypic hallmark of ARVC is fibroadipocytic replacement of cardiac myocytes, which is a unique phenotype with a yet-to-be-defined molecular mechanism. We established atrial myocyte cell lines expressing siRNA against desmoplakin (DP), responsible for human ARVC. We show suppression of DP expression leads to nuclear localization of the desmosomal protein plakoglobin and a 2-fold reduction in canonical Wnt/beta-catenin signaling through Tcf/Lef1 transcription factors. The ensuing phenotype is increased expression of adipogenic and fibrogenic genes and accumulation of fat droplets. We further show that cardiac-restricted deletion of Dsp, encoding DP, impairs cardiac morphogenesis and leads to high embryonic lethality in the homozygous state. Heterozygous DP-deficient mice exhibited excess adipocytes and fibrosis in the myocardium, increased myocyte apoptosis, cardiac dysfunction, and ventricular arrhythmias, thus recapitulating the phenotype of human ARVC. We believe our results provide for a novel molecular mechanism for the pathogenesis of ARVC and establish cardiac-restricted DP-deficient mice as a model for human ARVC. These findings could provide for the opportunity to identify new diagnostic markers and therapeutic targets in patients with ARVC.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Diagnosis of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Task Force of the Working Group Myocardial and Pericardial Disease of the European Society of Cardiology and of the Scientific Council on Cardiomyopathies of the International Society and Federation of Cardiology.

                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                23 September 2013
                : 8
                : 9
                : e75082
                Affiliations
                [1 ]UPMC, University Paris 06, Hôpital Pitié-Salpêtrière, Paris, France
                [2 ]INSERM, UMR_S956, ICAN, Hôpital Pitié-Salpêtrière, Paris, France
                [3 ]Institut de Cardiologie (AP-HP), Hôpital Pitié-Salpêtrière, Paris, France
                [4 ]Laboratoire d’histologie et de thérapie génique, University Paris XIII, Bobigny, France
                [5 ]Département de Pathologie, University Paris V, Hôpital Necker enfants malades, Paris, France
                [6 ]Service de Biochimie Métabolique, Unité de Cardiogénétique, Hôpital Pitié-Salpêtrière, Paris, France
                [7 ]Service d’Anatomie Pathologique, Hôpital Pitié-Salpêtrière, Paris, France
                [8 ]Département de Cardiologie, Hôpital Pontchaillou, Rennes, France
                [9 ]Département de Pathologie, Hôpital universitaire, Reims
                UAE University, Faculty of Medicine & Health Sciences, United Arab Emirates
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: AV EG NN EV. Performed the experiments: AV EG CP VF P. Fouret FG. Analyzed the data: AV EG CP EV. Wrote the manuscript: AV EG EV. Cardiac tissue collection: ED. Patient recruitment: SV PC GF. Patient characterization: GF FHL MK PC. Histological characterized of the patients: P. Fouret P. Fornes.

                Article
                PONE-D-13-13184
                10.1371/journal.pone.0075082
                3781033
                24086444
                24594369-1a69-40ec-9fb3-f9f0ca64a41b
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 10 April 2013
                : 12 August 2013
                Funding
                This work was supported by grants from Assistance Publique – Hôpitaux de Paris (PHRC programme hospitalier de recherche clinique AOM05073), "Fédération Française de Cardiologie,” “Société française de cardiologie,” and “Ligue contre la Cardiomyopathie”. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article