42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      ACME: Automated Cell Morphology Extractor for Comprehensive Reconstruction of Cell Membranes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The quantification of cell shape, cell migration, and cell rearrangements is important for addressing classical questions in developmental biology such as patterning and tissue morphogenesis. Time-lapse microscopic imaging of transgenic embryos expressing fluorescent reporters is the method of choice for tracking morphogenetic changes and establishing cell lineages and fate maps in vivo. However, the manual steps involved in curating thousands of putative cell segmentations have been a major bottleneck in the application of these technologies especially for cell membranes. Segmentation of cell membranes while more difficult than nuclear segmentation is necessary for quantifying the relations between changes in cell morphology and morphogenesis. We present a novel and fully automated method to first reconstruct membrane signals and then segment out cells from 3D membrane images even in dense tissues. The approach has three stages: 1) detection of local membrane planes, 2) voting to fill structural gaps, and 3) region segmentation. We demonstrate the superior performance of the algorithms quantitatively on time-lapse confocal and two-photon images of zebrafish neuroectoderm and paraxial mesoderm by comparing its results with those derived from human inspection. We also compared with synthetic microscopic images generated by simulating the process of imaging with fluorescent reporters under varying conditions of noise. Both the over-segmentation and under-segmentation percentages of our method are around 5%. The volume overlap of individual cells, compared to expert manual segmentation, is consistently over 84%. By using our software (ACME) to study somite formation, we were able to segment touching cells with high accuracy and reliably quantify changes in morphogenetic parameters such as cell shape and size, and the arrangement of epithelial and mesenchymal cells. Our software has been developed and tested on Windows, Mac, and Linux platforms and is available publicly under an open source BSD license ( https://github.com/krm15/ACME).

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy.

          A long-standing goal of biology is to map the behavior of all cells during vertebrate embryogenesis. We developed digital scanned laser light sheet fluorescence microscopy and recorded nuclei localization and movement in entire wild-type and mutant zebrafish embryos over the first 24 hours of development. Multiview in vivo imaging at 1.5 billion voxels per minute provides "digital embryos," that is, comprehensive databases of cell positions, divisions, and migratory tracks. Our analysis of global cell division patterns reveals a maternally defined initial morphodynamic symmetry break, which identifies the embryonic body axis. We further derive a model of germ layer formation and show that the mesendoderm forms from one-third of the embryo's cells in a single event. Our digital embryos, with 55 million nucleus entries, are provided as a resource.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A clock and wavefront model for control of the number of repeated structures during animal morphogenesis.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tissue tectonics: morphogenetic strain rates, cell shape change and intercalation

              The dynamic reshaping of tissues during morphogenesis results from a combination of individual cell behaviours and collective cell rearrangements. However, a comprehensive framework to unambiguously measure and link cell behaviour to tissue morphogenesis is lacking. Here we introduce such a kinematic framework, bridging cell and tissue behaviours at an intermediate, mesoscopic, level of cell clusters or domains. By measuring domain deformation in terms of the relative motion of cell positions and the evolution of their shapes, we characterize the basic invariant quantities that measure fundamental classes of cell behaviour, namely tensorial rates of cell shape change and cell intercalation. In doing so we introduce an explicit definition of cell intercalation as a continuous process. We demonstrate how spatiotemporal mapping of strain rates in three models of tissue morphogenesis leads to new insight into morphogenetic mechanisms. Our quantitative approach has broad relevance for the precise characterisation and comparison of morphogenetic phenotypes.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                December 2012
                December 2012
                6 December 2012
                : 8
                : 12
                : e1002780
                Affiliations
                [1]Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
                Carnegie Mellon University, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: KRM SGM. Performed the experiments: KRM RRN FX. Analyzed the data: KRM. Contributed reagents/materials/analysis tools: IAS. Wrote the paper: KRM SGM.

                Article
                PCOMPBIOL-D-12-00619
                10.1371/journal.pcbi.1002780
                3516542
                23236265
                245ac9a0-6b44-4a0a-a03a-ac5855124645
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 13 April 2012
                : 13 September 2012
                Page count
                Pages: 14
                Funding
                This research was supported by NIH grants P50HG004071 and R01DC010791. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Developmental Biology
                Morphogenesis
                Segmentation
                Computer Science
                Algorithms
                Computerized Simulations
                Software Engineering
                Software Tools
                Engineering
                Signal Processing
                Image Processing
                Mathematics
                Applied Mathematics
                Algorithms

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article