16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      New approaches for brain repair—from rescue to reprogramming

      , ,
      Nature
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Neuronal replacement from endogenous precursors in the adult brain after stroke.

          In the adult brain, new neurons are continuously generated in the subventricular zone and dentate gyrus, but it is unknown whether these neurons can replace those lost following damage or disease. Here we show that stroke, caused by transient middle cerebral artery occlusion in adult rats, leads to a marked increase of cell proliferation in the subventricular zone. Stroke-generated new neurons, as well as neuroblasts probably already formed before the insult, migrate into the severely damaged area of the striatum, where they express markers of developing and mature, striatal medium-sized spiny neurons. Thus, stroke induces differentiation of new neurons into the phenotype of most of the neurons destroyed by the ischemic lesion. Here we show that the adult brain has the capacity for self-repair after insults causing extensive neuronal death. If the new neurons are functional and their formation can be stimulated, a novel therapeutic strategy might be developed for stroke in humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transplantation of embryonic dopamine neurons for severe Parkinson's disease.

            Transplantation of human embryonic dopamine neurons into the brains of patients with Parkinson's disease has proved beneficial in open clinical trials. However, whether this intervention would be more effective than sham surgery in a controlled trial is not known. We randomly assigned 40 patients who were 34 to 75 years of age and had severe Parkinson's disease (mean duration, 14 years) to receive a transplant of nerve cells or sham surgery; all were to be followed in a double-blind manner for one year. In the transplant recipients, cultured mesencephalic tissue from four embryos was implanted into the putamen bilaterally. In the patients who received sham surgery, holes were drilled in the skull but the dura was not penetrated. The primary outcome was a subjective global rating of the change in the severity of disease, scored on a scale of -3.0 to 3.0 at one year, with negative scores indicating a worsening of symptoms and positive scores an improvement. The mean (+/-SD) scores on the global rating scale for improvement or deterioration at one year were 0.0+/-2.1 in the transplantation group and -0.4+/-1.7 in the sham-surgery group. Among younger patients (60 years old or younger), standardized tests of Parkinson's disease revealed significant improvement in the transplantation group as compared with the sham-surgery group when patients were tested in the morning before receiving medication (P=0.01 for scores on the Unified Parkinson's Disease Rating Scale; P=0.006 for the Schwab and England score). There was no significant improvement in older patients in the transplantation group. Fiber outgrowth from the transplanted neurons was detected in 17 of the 20 patients in the transplantation group, as indicated by an increase in 18F-fluorodopa uptake on positron-emission tomography or postmortem examination. After improvement in the first year, dystonia and dyskinesias recurred in 15 percent of the patients who received transplants, even after reduction or discontinuation of the dose of levodopa. Human embryonic dopamine-neuron transplants survive in patients with severe Parkinson's disease and result in some clinical benefit in younger but not in older patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer's disease model.

              Loss of neurons after brain injury and in neurodegenerative disease is often accompanied by reactive gliosis and scarring, which are difficult to reverse with existing treatment approaches. Here, we show that reactive glial cells in the cortex of stab-injured or Alzheimer's disease (AD) model mice can be directly reprogrammed into functional neurons in vivo using retroviral expression of a single neural transcription factor, NeuroD1. Following expression of NeuroD1, astrocytes were reprogrammed into glutamatergic neurons, while NG2 cells were reprogrammed into glutamatergic and GABAergic neurons. Cortical slice recordings revealed both spontaneous and evoked synaptic responses in NeuroD1-converted neurons, suggesting that they integrated into local neural circuits. NeuroD1 expression was also able to reprogram cultured human cortical astrocytes into functional neurons. Our studies therefore suggest that direct reprogramming of reactive glial cells into functional neurons in vivo could provide an alternative approach for repair of injured or diseased brain. Copyright © 2014 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Nature
                0028-0836
                1476-4687
                May 2018
                May 16 2018
                May 2018
                : 557
                : 7705
                : 329-334
                Article
                10.1038/s41586-018-0087-1
                29769670
                245e33a2-7648-464c-811e-3a09af1f44de
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article