745
views
0
recommends
+1 Recommend
0 collections
    9
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Acute renal failure – definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          There is no consensus definition of acute renal failure (ARF) in critically ill patients. More than 30 different definitions have been used in the literature, creating much confusion and making comparisons difficult. Similarly, strong debate exists on the validity and clinical relevance of animal models of ARF; on choices of fluid management and of end-points for trials of new interventions in this field; and on how information technology can be used to assist this process. Accordingly, we sought to review the available evidence, make recommendations and delineate key questions for future studies.

          Methods

          We undertook a systematic review of the literature using Medline and PubMed searches. We determined a list of key questions and convened a 2-day consensus conference to develop summary statements via a series of alternating breakout and plenary sessions. In these sessions, we identified supporting evidence and generated recommendations and/or directions for future research.

          Results

          We found sufficient consensus on 47 questions to allow the development of recommendations. Importantly, we were able to develop a consensus definition for ARF. In some cases it was also possible to issue useful consensus recommendations for future investigations. We present a summary of the findings. (Full versions of the six workgroups' findings are available on the internet at http://www.ADQI.net)

          Conclusion

          Despite limited data, broad areas of consensus exist for the physiological and clinical principles needed to guide the development of consensus recommendations for defining ARF, selection of animal models, methods of monitoring fluid therapy, choice of physiological and clinical end-points for trials, and the possible role of information technology.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study.

          To develop and validate a new Simplified Acute Physiology Score, the SAPS II, from a large sample of surgical and medical patients, and to provide a method to convert the score to a probability of hospital mortality. The SAPS II and the probability of hospital mortality were developed and validated using data from consecutive admissions to 137 adult medical and/or surgical intensive care units in 12 countries. The 13,152 patients were randomly divided into developmental (65%) and validation (35%) samples. Patients younger than 18 years, burn patients, coronary care patients, and cardiac surgery patients were excluded. Vital status at hospital discharge. The SAPS II includes only 17 variables: 12 physiology variables, age, type of admission (scheduled surgical, unscheduled surgical, or medical), and three underlying disease variables (acquired immunodeficiency syndrome, metastatic cancer, and hematologic malignancy). Goodness-of-fit tests indicated that the model performed well in the developmental sample and validated well in an independent sample of patients (P = .883 and P = .104 in the developmental and validation samples, respectively). The area under the receiver operating characteristic curve was 0.88 in the developmental sample and 0.86 in the validation sample. The SAPS II, based on a large international sample of patients, provides an estimate of the risk of death without having to specify a primary diagnosis. This is a starting point for future evaluation of the efficiency of intensive care units.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure.

            In mechanically ventilated patients with acute circulatory failure related to sepsis, we investigated whether the respiratory changes in arterial pressure could be related to the effects of volume expansion (VE) on cardiac index (CI). Forty patients instrumented with indwelling systemic and pulmonary artery catheters were studied before and after VE. Maximal and minimal values of pulse pressure (Pp(max) and Pp(min)) and systolic pressure (Ps(max) and Ps(min)) were determined over one respiratory cycle. The respiratory changes in pulse pressure (DeltaPp) were calculated as the difference between Pp(max) and Pp(min) divided by the mean of the two values and were expressed as a percentage. The respiratory changes in systolic pressure (DeltaPs) were calculated using a similar formula. The VE-induced increase in CI was >/= 15% in 16 patients (responders) and < 15% in 24 patients (nonresponders). Before VE, DeltaPp (24 +/- 9 versus 7 +/- 3%, p < 0.001) and DeltaPs (15 +/- 5 versus 6 +/- 3%, p < 0.001) were higher in responders than in nonresponders. Receiver operating characteristic (ROC) curves analysis showed that DeltaPp was a more accurate indicator of fluid responsiveness than DeltaPs. Before VE, a DeltaPp value of 13% allowed discrimination between responders and nonresponders with a sensitivity of 94% and a specificity of 96%. VE-induced changes in CI closely correlated with DeltaPp before volume expansion (r(2) = 0. 85, p < 0.001). VE decreased DeltaPp from 14 +/- 10 to 7 +/- 5% (p < 0.001) and VE-induced changes in DeltaPp correlated with VE-induced changes in CI (r(2) = 0.72, p < 0.001). It was concluded that in mechanically ventilated patients with acute circulatory failure related to sepsis, analysis of DeltaPp is a simple method for predicting and assessing the hemodynamic effects of VE, and that DeltaPp is a more reliable indicator of fluid responsiveness than DeltaPs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of different doses in continuous veno-venous haemofiltration on outcomes of acute renal failure: a prospective randomised trial.

              Continuous veno-venous haemofiltration is increasingly used to treat acute renal failure in critically ill patients, but a clear definition of an adequate treatment dose has not been established. We undertook a prospective randomised study of the impact different ultrafiltration doses in continuous renal replacement therapy on survival. We enrolled 425 patients, with a mean age of 61 years, in intensive care who had acute renal failure. Patients were randomly assigned ultrafiltration at 20 mL h(-1) kg(-1) (group 1, n=146), 35 mL h(-1) kg(-1) (group 2, n=139), or 45 mL h(-1) kg(-1) (group 3, n=140). The primary endpoint was survival at 15 days after stopping haemofiltration. We also assessed recovery of renal function and frequency of complications during treatment. Analysis was by intention to treat. Survival in group 1 was significantly lower than in groups 2 (p=0.0007) and 3 (p=0.0013). Survival in groups 2 and 3 did not differ significantly (p=0.87). Adjustment for possible confounding factors did not change the pattern of differences among the groups. Survivors in all groups had lower concentrations of blood urea nitrogen before continuous haemofiltration was started than non-survivors. 95%, 92%, and 90% of survivors in groups 1, 2, and 3, respectively, had full recovery of renal function. The frequency of complications was similarly low in all groups. Mortality among these critically ill patients was high, but increase in the rate of ultrafiltration improved survival significantly. We recommend that ultrafiltration should be prescribed according to patient's bodyweight and should reach at least 35 mL h(-1) kg(-1).
                Bookmark

                Author and article information

                Journal
                Crit Care
                Critical Care
                BioMed Central (London )
                1364-8535
                1466-609X
                2004
                24 May 2004
                : 8
                : 4
                : R204-R212
                Affiliations
                [1 ]Department of Intensive Care and Medicine, Austin Health, Melbourne, Australia
                [2 ]Department of Nephrology, San Bortolo Hospital, Vicenza, Italy
                [3 ]Departments of Critical Care Medicine and Medicine, University of Pittsburgh Medical Center, and Renal Section, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
                [4 ]Department of Medicine, University of California, San Diego, California, USA
                [5 ]Department of Medicine, University of Pittsburgh Medical Center, and Renal Section, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
                [6 ]For a complete list of authors, see Appendix 1
                Article
                cc2872
                10.1186/cc2872
                522841
                15312219
                2477d36f-03e7-48d2-9ce2-1b5d8d41273b
                Copyright © 2004 Bellomo et al.; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL.
                History
                : 27 March 2004
                : 22 April 2004
                Categories
                Research

                Emergency medicine & Trauma
                creatinine,kidney,glomerular filtration rate,randomized controlled trials,intravenous fluids,urea,acute renal failure,information technology,animal models,outcome research

                Comments

                Comment on this article