5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Melatonin Attenuates Calcium Deposition from Vascular Smooth Muscle Cells by Activating Mitochondrial Fusion and Mitophagy via an AMPK/OPA1 Signaling Pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mitochondrial fusion/mitophagy plays a role in cardiovascular calcification. Melatonin has been shown to protect against cardiovascular disease. This study sought to explore whether melatonin attenuates vascular calcification by regulating mitochondrial fusion/mitophagy via the AMP-activated protein kinase/optic atrophy 1 (AMPK/OPA1) signaling pathway. The effects of melatonin on vascular calcification were investigated in vascular smooth muscle cells (VSMCs). Calcium deposits were visualized by Alizarin Red S staining, while calcium content and alkaline phosphatase (ALP) activity were used to evaluate osteogenic differentiation. Western blots were used to measure expression of runt-related transcription factor 2 (Runx2), mitofusin 2 (Mfn2), mito-light chain 3 (mito-LC3) II, and cleaved caspase 3. Melatonin markedly reduced calcium deposition and ALP activity. Runx2 and cleaved caspase 3 were downregulated in response to melatonin, whereas Mfn2 and mito-LC3II were enhanced and accompanied by decreased mitochondrial superoxide levels. Melatonin also maintained mitochondrial function and promoted mitochondrial fusion/mitophagy via the OPA1 pathway. However, OPA1 deletion abolished the protective effects of melatonin on VSMC calcification. Melatonin treatment significantly increased p-AMPK and OPA1 protein expression, whereas treatment with compound C ablated the observed benefits of melatonin treatment. Collectively, our results demonstrate that melatonin protects VSMCs against calcification by promoting mitochondrial fusion/mitophagy via the AMPK/OPA1 pathway.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: not found
          • Article: not found

          Melatonin attenuates myocardial ischemia‐reperfusion injury via improving mitochondrial fusion/mitophagy and activating the AMPK‐OPA1 signaling pathways

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of the sodium-dependent phosphate cotransporter, Pit-1, in vascular smooth muscle cell calcification.

            Vascular calcification is associated with cardiovascular morbidity and mortality. Hyperphosphatemia is an important contributor to vascular calcification. Our previous studies demonstrated that elevated phosphate induces calcification of smooth muscle cells (SMC) in vitro. Inhibition of phosphate transport by phosphonoformic acid blocked phosphate-induced calcification, implicating sodium-dependent phosphate cotransporters in this process. In the present study, we have investigated the role of the type III sodium-dependent phosphate cotransporter, Pit-1, in SMC calcification in vitro. Human SMC stably expressing Pit-1 small interfering double-stranded RNA (SMC-iRNA) were established using a retroviral system. SMC-iRNA had decreased Pit-1 mRNA and protein levels and sodium-dependent phosphate transport activity compared with the control transduced cells (SMC-CT) (2.9 versus 9.78 nmol/mg protein per 30 minutes, respectively). Furthermore, phosphate-induced SMC calcification was significantly inhibited in SMC-iRNA compared with SMC-CT at all time points examined. Overexpression of Pit-1 restored phosphate uptake and phosphate-induced calcification in Pit-1 deficient cells. Mechanistically, although Pit-1-mediated SMC calcification was not associated with apoptosis or cell-derived vesicles, inhibition of phosphate uptake in Pit-1 knockdown cells blocked the induction of the osteogenic markers Cbfa-1 and osteopontin. Our results indicate that phosphate uptake through Pit-1 is essential for SMC calcification and phenotypic modulation in response to elevated phosphate.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Melatonin Ameliorates the Progression of Atherosclerosis via Mitophagy Activation and NLRP3 Inflammasome Inhibition

              The NLRP3 (nucleotide-binding domain and leucine-rich repeat pyrin domain containing 3) inflammasome-mediated inflammatory responses are critically involved in the progression of atherosclerosis (AS), which is the essential cause for cardiovascular diseases. Melatonin has anti-inflammatory properties. However, little is known about the potential effects of melatonin in the pathological process of AS. Herein, we demonstrate that melatonin suppressed prolonged NLRP3 inflammasome activation in atherosclerotic lesions by reactive oxygen species (ROS) scavenging via mitophagy in macrophages. The atherosclerotic mouse model was induced with a high-fat diet using ApoE−/− mice. Melatonin treatment markedly attenuated AS plaque size and vulnerability. Furthermore, melatonin decreased NLRP3 inflammasome activation and the consequent IL-1β secretion within atherosclerotic lesions. Despite the unchanged protein expression, the silent information regulator 3 (Sirt3) activity was elevated in the atherosclerotic lesions in melatonin-treated mice. In ox-LDL-treated macrophages, melatonin attenuated the NLRP3 inflammasome activation and the inflammatory factors secretion, while this protective effect was abolished by either Sirt3 silence or autophagy inhibitor 3-MA. Mitochondrial ROS (mitoROS), which was a recognized inducer for NLRP3 inflammasome, was attenuated by melatonin through the induction of mitophagy. Both Sirt3-siRNA and autophagy inhibitor 3-MA partially abolished the beneficial effects of melatonin on mitoROS clearance and NLRP3 inflammasome activation, indicating the crucial role of Sirt3-mediated mitophagy. Furthermore, we demonstrated that melatonin protected against AS via the Sirt3/FOXO3a/Parkin signaling pathway. In conclusion, the current study demonstrated that melatonin prevented atherosclerotic progression, at least in part, via inducing mitophagy and attenuating NLRP3 inflammasome activation, which was mediated by the Sirt3/FOXO3a/Parkin signaling pathway. Collectively, our study provides insight into melatonin as a new target for therapeutic intervention for AS.
                Bookmark

                Author and article information

                Contributors
                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OMCL
                Oxidative Medicine and Cellular Longevity
                Hindawi
                1942-0900
                1942-0994
                2020
                24 April 2020
                : 2020
                : 5298483
                Affiliations
                1Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China
                2Department of Cardiology, Nanlou Division, Chinese PLA General Hospital at Beijing; National Clinical Research Center for Geriatric Diseases, China
                Author notes

                Academic Editor: Gabriele Saretzki

                Author information
                https://orcid.org/0000-0001-8658-5895
                https://orcid.org/0000-0002-9545-1984
                Article
                10.1155/2020/5298483
                7196154
                32377301
                24b5b9a4-334a-4168-96be-e1e62c517e75
                Copyright © 2020 Wei Ren Chen et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 9 December 2019
                : 2 March 2020
                : 20 March 2020
                Funding
                Funded by: Beijing Municipal Health Commission
                Award ID: PXM2019_026272_000005
                Award ID: PXM2019_026272_000006
                Funded by: Beijing Municipal Administration of Hospitals
                Award ID: SML20180601
                Award ID: DFL20150601
                Funded by: National Key Research and Development Program of China
                Award ID: 2017YFC0908800
                Categories
                Research Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article