7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sea ice led to poleward-shifted winds at the Last Glacial Maximum: the influence of state dependency on CMIP5 and PMIP3 models

      , , , , , ,
      Climate of the Past
      Copernicus GmbH

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p><strong>Abstract.</strong> Latitudinal shifts in the Southern Ocean westerly wind jet could drive changes in the glacial to interglacial ocean CO<sub>2</sub> inventory. However, whilst CMIP5 model results feature consistent future-warming jet shifts, there is considerable disagreement in deglacial-warming jet shifts. We find here that the dependence of pre-industrial (PI) to Last Glacial Maximum (LGM) jet shifts on PI jet position, or state dependency, explains less of the shifts in jet simulated by the models for the LGM compared with future-warming scenarios. State dependence is also weaker for intensity changes, compared to latitudinal shifts in the jet. Winter sea ice was considerably more extensive during the LGM. Changes in surface heat fluxes, due to this sea ice change, probably had a large impact on the jet. Models that both simulate realistically large expansions in sea ice and feature PI jets which are south of 50°<span class="thinspace"></span>S show an increase in wind speed around 55°<span class="thinspace"></span>S and can show a poleward shift in the jet between the PI and the LGM. However, models with the PI jet positioned equatorwards of around 47°<span class="thinspace"></span>S do not show this response: the sea ice edge is too far from the jet for it to respond. In models with accurately positioned PI jets, a +1° difference in the latitude of the sea ice edge tends to be associated with a −0.85° shift in the 850<span class="thinspace"></span>hPa jet. However, it seems that around 5° of expansion of LGM sea ice is necessary to hold the jet in its PI position. Since the Gersonde et al. (2005) data support an expansion of more than 5°, this result suggests that a slight poleward shift and intensification was the most likely jet change between the PI and the LGM. Without the effect of sea ice, models simulate poleward-shifted westerlies in warming climates and equatorward-shifted westerlies in colder climates. However, the feedback of sea ice counters and reverses the equatorward trend in cooler climates so that the LGM winds were more likely to have also been shifted slightly poleward.</p>

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          An Overview of CMIP5 and the Experiment Design

          The fifth phase of the Coupled Model Intercomparison Project (CMIP5) will produce a state-of-the- art multimodel dataset designed to advance our knowledge of climate variability and climate change. Researchers worldwide are analyzing the model output and will produce results likely to underlie the forthcoming Fifth Assessment Report by the Intergovernmental Panel on Climate Change. Unprecedented in scale and attracting interest from all major climate modeling groups, CMIP5 includes “long term” simulations of twentieth-century climate and projections for the twenty-first century and beyond. Conventional atmosphere–ocean global climate models and Earth system models of intermediate complexity are for the first time being joined by more recently developed Earth system models under an experiment design that allows both types of models to be compared to observations on an equal footing. Besides the longterm experiments, CMIP5 calls for an entirely new suite of “near term” simulations focusing on recent decades and the future to year 2035. These “decadal predictions” are initialized based on observations and will be used to explore the predictability of climate and to assess the forecast system's predictive skill. The CMIP5 experiment design also allows for participation of stand-alone atmospheric models and includes a variety of idealized experiments that will improve understanding of the range of model responses found in the more complex and realistic simulations. An exceptionally comprehensive set of model output is being collected and made freely available to researchers through an integrated but distributed data archive. For researchers unfamiliar with climate models, the limitations of the models and experiment design are described.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The last glacial termination.

            A major puzzle of paleoclimatology is why, after a long interval of cooling climate, each late Quaternary ice age ended with a relatively short warming leg called a termination. We here offer a comprehensive hypothesis of how Earth emerged from the last global ice age. A prerequisite was the growth of very large Northern Hemisphere ice sheets, whose subsequent collapse created stadial conditions that disrupted global patterns of ocean and atmospheric circulation. The Southern Hemisphere westerlies shifted poleward during each northern stadial, producing pulses of ocean upwelling and warming that together accounted for much of the termination in the Southern Ocean and Antarctica. Rising atmospheric CO2 during southern upwelling pulses augmented warming during the last termination in both polar hemispheres.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Sea-surface temperature and sea ice distribution of the Southern Ocean at the EPILOG Last Glacial Maximum—a circum-Antarctic view based on siliceous microfossil records

                Bookmark

                Author and article information

                Journal
                Climate of the Past
                Clim. Past
                Copernicus GmbH
                1814-9332
                2016
                December 19 2016
                : 12
                : 12
                : 2241-2253
                Article
                10.5194/cp-12-2241-2016
                24bb410c-a6d0-4eda-9e6f-e0b26f772414
                © 2016

                https://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article