62
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Discovery and Optimization of a Natural HIV-1 Entry Inhibitor Targeting the gp41 Fusion Peptide

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A variety of molecules in human blood have been implicated in the inhibition of HIV-1. However, it remained elusive which circulating natural compounds are most effective in controlling viral replication in vivo. To identify natural HIV-1 inhibitors we screened a comprehensive peptide library generated from human hemofiltrate. The most potent fraction contained a 20-residue peptide, designated VIRUS-INHIBITORY PEPTIDE (VIRIP), corresponding to the C-proximal region of alpha1-antitrypsin, the most abundant circulating serine protease inhibitor. We found that VIRIP inhibits a wide variety of HIV-1 strains including those resistant to current antiretroviral drugs. Further analysis demonstrated that VIRIP blocks HIV-1 entry by interacting with the gp41 fusion peptide and showed that a few amino acid changes increase its antiretroviral potency by two orders of magnitude. Thus, as a highly specific natural inhibitor of the HIV-1 gp41 fusion peptide, VIRIP may lead to the development of another class of antiretroviral drugs.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids.

          9-Fluorenylmethoxycarbonyl (Fmoc) amino acids were first used for solid phase peptide synthesis a little more than a decade ago. Since that time, Fmoc solid phase peptide synthesis methodology has been greatly enhanced by the introduction of a variety of solid supports, linkages, and side chain protecting groups, as well as by increased understanding of solvation conditions. These advances have led to many impressive syntheses, such as those of biologically active and isotopically labeled peptides and small proteins. The great variety of conditions under which Fmoc solid phase peptide synthesis may be carried out represents a truly "orthogonal" scheme, and thus offers many unique opportunities for bioorganic chemistry.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry.

            T-20, a synthetic peptide corresponding to a region of the transmembrane subunit of the HIV-1 envelope protein, blocks cell fusion and viral entry at concentrations of less than 2 ng/ml in vitro. We administered intravenous T-20 (monotherapy) for 14 days to sixteen HIV-infected adults in four dose groups (3, 10, 30 and 100 mg twice daily). There were significant, dose-related declines in plasma HIV RNA in all subjects who received higher dose levels. All four subjects receiving 100 mg twice daily had a decline in plasma HIV RNA to less than 500 copies/ml, by bDNA assay. A sensitive RT-PCR assay (detection threshold 40 copies/ml) demonstrated that, although undetectable levels were not achieved in the 14-day dosing period, there was a 1.96 log10 median decline in plasma HIV RNA in these subjects. This study provides proof-of-concept that viral entry can be successfully blocked in vivo. Short-term administration of T-20 seems safe and provides potent inhibition of HIV replication comparable to anti-retroviral regimens approved at present.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Human plasma proteinase inhibitors.

                Bookmark

                Author and article information

                Journal
                Cell
                Cell
                Elsevier BV
                00928674
                April 2007
                April 2007
                : 129
                : 2
                : 263-275
                Article
                10.1016/j.cell.2007.02.042
                17448989
                24c1295c-c29f-4d6b-b5cf-334dc71be968
                © 2007

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://www.elsevier.com/open-access/userlicense/1.0/

                History

                Comments

                Comment on this article