37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Joining Inventory by Parataxonomists with DNA Barcoding of a Large Complex Tropical Conserved Wildland in Northwestern Costa Rica

      research-article
      * ,
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The many components of conservation through biodiversity development of a large complex tropical wildland, Area de Conservacion Guanacaste (ACG), thrive on knowing what is its biodiversity and natural history. For 32 years a growing team of Costa Rican parataxonomists has conducted biodiversity inventory of ACG caterpillars, their food plants, and their parasitoids. In 2003, DNA barcoding was added to the inventory process.

          Methodology/Principal Findings

          We describe some of the salient consequences for the parataxonomists of barcoding becoming part of a field biodiversity inventory process that has centuries of tradition. From the barcoding results, the parataxonomists, as well as other downstream users, gain a more fine-scale and greater understanding of the specimens they find, rear, photograph, database and deliver. The parataxonomists also need to adjust to collecting more specimens of what appear to be the “same species” – cryptic species that cannot be distinguished by eye or even food plant alone – while having to work with the name changes and taxonomic uncertainty that comes with discovering that what looked like one species may be many.

          Conclusions/Significance

          These career parataxonomists, despite their lack of formal higher education, have proven very capable of absorbing and working around the additional complexity and requirements for accuracy and detail that are generated by adding barcoding to the field base of the ACG inventory. In the process, they have also gained a greater understanding of the fine details of phylogeny, relatedness, evolution, and species-packing in their own tropical complex ecosytems. There is no reason to view DNA barcoding as incompatible in any way with tropical biodiversity inventory as conducted by parataxonomists. Their year-round on-site inventory effort lends itself well to the sampling patterns and sample sizes needed to build a thorough barcode library. Furthermore, the biological understanding that comes with barcoding increases the scientific penetrance of biodiversity information, DNA understanding, evolution, and ecology into the communities in which the parataxonomists and their families are resident.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          A DNA barcode for land plants.

          DNA barcoding involves sequencing a standard region of DNA as a tool for species identification. However, there has been no agreement on which region(s) should be used for barcoding land plants. To provide a community recommendation on a standard plant barcode, we have compared the performance of 7 leading candidate plastid DNA regions (atpF-atpH spacer, matK gene, rbcL gene, rpoB gene, rpoC1 gene, psbK-psbI spacer, and trnH-psbA spacer). Based on assessments of recoverability, sequence quality, and levels of species discrimination, we recommend the 2-locus combination of rbcL+matK as the plant barcode. This core 2-locus barcode will provide a universal framework for the routine use of DNA sequence data to identify specimens and contribute toward the discovery of overlooked species of land plants.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections.

            We DNA barcoded 2,597 parasitoid wasps belonging to 6 microgastrine braconid genera reared from parapatric tropical dry forest, cloud forest, and rain forest in Area de Conservación Guanacaste (ACG) in northwestern Costa Rica and combined these data with records of caterpillar hosts and morphological analyses. We asked whether barcoding and morphology discover the same provisional species and whether the biological entities revealed by our analysis are congruent with wasp host specificity. Morphological analysis revealed 171 provisional species, but barcoding exposed an additional 142 provisional species; 95% of the total is likely to be undescribed. These 313 provisional species are extraordinarily host specific; more than 90% attack only 1 or 2 species of caterpillars out of more than 3,500 species sampled. The most extreme case of overlooked diversity is the morphospecies Apanteles leucostigmus. This minute black wasp with a distinctive white wing stigma was thought to parasitize 32 species of ACG hesperiid caterpillars, but barcoding revealed 36 provisional species, each attacking one or a very few closely related species of caterpillars. When host records and/or within-ACG distributions suggested that DNA barcoding had missed a species-pair, or when provisional species were separated only by slight differences in their barcodes, we examined nuclear sequences to test hypotheses of presumptive species boundaries and to further probe host specificity. Our iterative process of combining morphological analysis, ecology, and DNA barcoding and reiteratively using specimens maintained in permanent collections has resulted in a much more fine-scaled understanding of parasitoid diversity and host specificity than any one of these elements could have produced on its own.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae).

              Insect parasitoids are a major component of global biodiversity and affect the population dynamics of their hosts. However, identification of insect parasitoids is often difficult, and they are suspected to contain many cryptic species. Here, we ask whether the cytochrome c oxidase I DNA barcode could function as a tool for species identification and discovery for the 20 morphospecies of Belvosia parasitoid flies (Diptera: Tachinidae) that have been reared from caterpillars (Lepidoptera) in Area de Conservación Guanacaste (ACG), northwestern Costa Rica. Barcoding not only discriminates among all 17 highly host-specific morphospecies of ACG Belvosia, but it also raises the species count to 32 by revealing that each of the three generalist species are actually arrays of highly host-specific cryptic species. We also identified likely hybridization among Belvosia by using a variable internal transcribed spacer region 1 nuclear rDNA sequence as a genetic covariate in addition to the strategy of overlaying barcode clusters with ecological information. If general, these results will increase estimates of global species richness and imply that tropical conservation and host-parasite interactions may be more complex than expected.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                16 August 2011
                : 6
                : 8
                Affiliations
                [1]Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
                Centre National de la Recherche Scientifique, France
                Author notes

                Conceived and designed the experiments: DHJ WH. Performed the experiments: DHJ WH. Analyzed the data: DHJ WH. Contributed reagents/materials/analysis tools: DHJ WH. Wrote the paper: DHJ WH.

                Article
                PONE-D-10-06096
                10.1371/journal.pone.0018123
                3156711
                21857894
                24dfbd35-0033-4746-b2a2-61284d45f86e
                Janzen, Hallwachs. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                Page count
                Pages: 13
                Categories
                Review
                Biology
                Ecology
                Biodiversity
                Conservation Science
                Environmental Protection
                Species Extinction
                Genetics
                Molecular Genetics
                Gene Identification and Analysis
                Genomics
                Comparative Genomics
                Genome Analysis Tools
                Genome Complexity
                Genome Databases
                Genome Sequencing
                Science Policy
                Research Assessment
                Science Education
                Science Policy and Economics
                Science and Technology Workforce
                Technology Development
                Social and Behavioral Sciences
                Science Education

                Uncategorized
                Uncategorized

                Comments

                Comment on this article