75
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A High Force of Plasmodium vivax Blood-Stage Infection Drives the Rapid Acquisition of Immunity in Papua New Guinean Children

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          When both parasite species are co-endemic, Plasmodium vivax incidence peaks in younger children compared to P. falciparum. To identify differences in the number of blood stage infections of these species and its potential link to acquisition of immunity, we have estimated the molecular force of blood-stage infection of P. vivax ( molFOB, i.e. the number of genetically distinct blood-stage infections over time), and compared it to previously reported values for P. falciparum.

          Methods

          P. vivax molFOB was estimated by high resolution genotyping parasites in samples collected over 16 months in a cohort of 264 Papua New Guinean children living in an area highly endemic for P. falciparum and P. vivax. In this cohort, P. vivax episodes decreased three-fold over the age range of 1–4.5 years.

          Results

          On average, children acquired 14.0 new P. vivax blood-stage clones/child/year-at-risk. While the incidence of clinical P. vivax illness was strongly associated with mol FOB (incidence rate ratio (IRR) = 1.99, 95% confidence interval (CI95) [1.80, 2.19]), molFOB did not change with age. The incidence of P. vivax showed a faster decrease with age in children with high (IRR = 0.49, CI95 [0.38, 0.64] p<0.001) compared to those with low exposure (IRR = 0.63, CI95[0.43, 0.93] p = 0.02).

          Conclusion

          P. vivax molFOB is considerably higher than P. falciparum molFOB (5.5 clones/child/year-at-risk). The high number of P. vivax clones that infect children in early childhood contribute to the rapid acquisition of immunity against clinical P. vivax malaria.

          Author Summary

          In areas where P. vivax and P. falciparum parasite species co-occur, immunity to P. vivax seems to be acquired more rapidly. This difference could be caused either by generic differences in the way immunity is acquired or by a relatively higher exposure to P. vivax blood-stage infections in early life. We found that children experienced an average of 14 new P. vivax blood-stage infections per year, and that the number of new infections acquired predicted how often children fell ill with vivax malaria by genotyping all P. vivax infections that occurred in a group of 264 children 1–4 years of age followed for 16 months. The burden of blood-stage infections caused by P. vivax was therefore at least twice as high as that caused by P. falciparum. This higher force-of-blood-stage infection ( molFOB) caused by P. vivax is at least partially due to the ability of P. vivax hypnozoites to relapse from long-lasting liver stages. A high exposure to P. vivax blood-stage infection resulted in more rapid decrease in the incidence of P. vivax malaria. The high number of P. vivax clones that infect children in early childhood is thus likely to contribute substantially to the rapid acquisition of immunity against clinical P. vivax malaria.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Determinants of relapse periodicity in Plasmodium vivax malaria

          Plasmodium vivax is a major cause of febrile illness in endemic areas of Asia, Central and South America, and the horn of Africa. Plasmodium vivax infections are characterized by relapses of malaria arising from persistent liver stages of the parasite (hypnozoites) which can be prevented only by 8-aminoquinoline anti-malarials. Tropical P. vivax relapses at three week intervals if rapidly eliminated anti-malarials are given for treatment, whereas in temperate regions and parts of the sub-tropics P. vivax infections are characterized either by a long incubation or a long-latency period between illness and relapse - in both cases approximating 8-10 months. The epidemiology of the different relapse phenotypes has not been defined adequately despite obvious relevance to malaria control and elimination. The number of sporozoites inoculated by the anopheline mosquito is an important determinant of both the timing and the number of relapses. The intervals between relapses display a remarkable periodicity which has not been explained. Evidence is presented that the proportion of patients who have successive relapses is relatively constant and that the factor which activates hypnozoites and leads to regular interval relapse in vivax malaria is the systemic febrile illness itself. It is proposed that in endemic areas a large proportion of the population harbours latent hypnozoites which can be activated by a systemic illness such as vivax or falciparum malaria. This explains the high rates of vivax following falciparum malaria, the high proportion of heterologous genotypes in relapses, the higher rates of relapse in people living in endemic areas compared with artificial infection studies, and, by facilitating recombination between different genotypes, contributes to P. vivax genetic diversity particularly in low transmission settings. Long-latency P. vivax phenotypes may be more widespread and more prevalent than currently thought. These observations have important implications for the assessment of radical treatment efficacy and for malaria control and elimination.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Relation between severe malaria morbidity in children and level of Plasmodium falciparum transmission in Africa.

            Malaria remains a major cause of mortality and morbidity in Africa. Many approaches to malaria control involve reducing the chances of infection but little is known of the relations between parasite exposure and the development of effective clinical immunity so the long-term effect of such approaches to control on the pattern and frequency of malaria cannot be predicted. We have prospectively recorded paediatric admissions with severe malaria over three to five years from five discrete communities in The Gambia and Kenya. Demographic analysis of the communities exposed to disease risk allowed the estimation of age-specific rates for severe malaria. Within each community the exposure to Plasmodium falciparum infection was determined through repeated parasitological and serological surveys among children and infants. We used acute respiratory-tract infections (ARI) as a comparison. 3556 malaria admissions were recorded for the five sites. Marked differences were observed in age, clinical spectrum and rates of severe malaria between the five sites. Paradoxically, the risks of severe disease in childhood were lowest among populations with the highest transmission intensities, and the highest disease risks were observed among populations exposed to low-to-moderate intensities of transmission. For severe malaria, for example, admission rates (per 1000 per year) for children up to their 10th birthday were estimated as 3.9, 25.8, 25.9, 16.7, and 18.0 in the five communities; the forces of infection estimated for those communities (new infections per infant per month) were 0.001, 0.034, 0.050, 0.093, and 0.176, respectively. Similar trends were noted for cerebral malaria and for severe malaria anaemia but not for ARI. Mean age of disease decreased with increasing transmission intensity. We propose that a critical determinant of life-time disease risk is the ability to develop clinical immunity early in life during a period when other protective mechanisms may operate. In highly endemic areas measures which reduce parasite transmission, and thus immunity, may lead to a change in both the clinical spectrum of severe disease and the overall burden of severe malaria morbidity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Relapses of Plasmodium vivax infection usually result from activation of heterologous hypnozoites.

              Relapses originating from hypnozoites are characteristic of Plasmodium vivax infections. Thus, reappearance of parasitemia after treatment can result from relapse, recrudescence, or reinfection. It has been assumed that parasites causing relapse would be a subset of the parasites that caused the primary infection. Paired samples were collected before initiation of antimalarial treatment and at recurrence of parasitemia from 149 patients with vivax malaria in Thailand (n=36), where reinfection could be excluded, and during field studies in Myanmar (n=75) and India (n=38). Combined genetic data from 2 genotyping approaches showed that novel P. vivax populations were present in the majority of patients with recurrent infection (107 [72%] of 149 patients overall [78% of patients in Thailand, 75% of patients in Myanmar {Burma}, and 63% of patients in India]). In 61% of the Thai and Burmese patients and in 55% of the Indian patients, the recurrent infections contained none of the parasite genotypes that caused the acute infection. The P. vivax populations emerging from hypnozoites commonly differ from the populations that caused the acute episode. Activation of heterologous hypnozoite populations is the most common cause of first relapse in patients with vivax malaria.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                1935-2727
                1935-2735
                September 2013
                5 September 2013
                : 7
                : 9
                : e2403
                Affiliations
                [1 ]Swiss Tropical and Public Health Institute, Basel, Switzerland
                [2 ]University of Basel, Basel, Switzerland
                [3 ]Walter and Eliza Hall Institute, Parkville, Victoria, Australia
                [4 ]University of California, Berkeley, Department of Biostatistics, Berkeley, California, United States of America
                [5 ]Papua New Guinea Institute of Medical Research, Goroka, Eastern Highland Province, Papua New Guinea
                [6 ]Barcelona Centre for International Health Research, Barcelona, Spain
                Queensland Institute for Medical Research, Australia
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: IM IF. Performed the experiments: CK BK EL. Analyzed the data: CK KLC TPS IM. Contributed reagents/materials/analysis tools: PMS. Wrote the paper: CK IM IF KLC TPS.

                Article
                PNTD-D-12-01566
                10.1371/journal.pntd.0002403
                3764149
                24040428
                24e11276-f8f2-4fb4-8eaf-5b6432357570
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 26 November 2012
                : 23 July 2013
                Page count
                Pages: 8
                Funding
                The study was supported by Swiss National Science Foundation Grants 310030-134889 and 320030-125316, National Institutes of Health (AI063135), National Health & Medical Research Council (1021544 & 1003825). IM is supported by a Senior Research Fellowship from the NHMRC (1043345). This work was made possible through Victorian State Government Operational Infrastructure Support and Australian Government NHMRC IRIISS. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Medicine
                Epidemiology
                Infectious Disease Epidemiology
                Molecular Epidemiology
                Global Health
                Infectious Diseases
                Parasitic Diseases
                Malaria
                Plasmodium Vivax

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Malaria vaccine development collection topic 1) Historical and epidemiological evidence of malaria vaccine feasibility.

                See: https://www.scienceopen.com/collection/malariavaccine

                The epidemiology of both P. falciparum and P. vivax also provides strong indication that the development of an effective vaccine against malaria is feasible. In highly endemic areas such as Papua New Guinea, where both parasites co-exist, clinical immunity that protect against severe disease is acquired more rapidly to P. vivax than to P. falciparum. This has been recognized as a result of a higher force-of-infection for P. vivax, due to its ability to relapse from dormant hypnozoites and cause additional blood-stage infection(s). As a consequence of this, clinical disease caused by P. vivax is virtually absent in children above the age of five, while it takes longer (around 10 years) for P. falciparum. The high prevalence of sub-microscopic infections, common even in areas where malaria transmission has been substantially reduced is an indication of the development of anti-parasite immunity that inhibits growth and replication of parasites, providing good control of blood-stage parasitemia. Sterile protection however, is never achieved, and despite rarely suffering from clinical disease, adults continue susceptible to re-infections.

                2018-10-03 17:26 UTC
                +1

                Comment on this article