39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A New Slow Releasing, H 2S Generating Compound, GYY4137 Relaxes Spontaneous and Oxytocin-Stimulated Contractions of Human and Rat Pregnant Myometrium

      research-article
      , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Better tocolytics are required to help prevent preterm labour. The gaseotransmitter Hydrogen sulphide (H 2S) has been shown to reduce myometrial contractility and thus is of potential interest. However previous studies used NaHS, which is toxic and releases H 2S as a non-physiological bolus and thus alternative H 2S donors are sought. GYY4137 has been developed to slowly release H 2S and hence better reflect endogenous physiological release. We have examined its effects on spontaneous and oxytocin-stimulated contractility and compared them to NaHS, in human and rat myometrium, throughout gestation. The effects on contractility in response to GYY4137 (1 nM–1 mM) and NaHS (1 mM) were examined on myometrial strips from, biopsies of women undergoing elective caesarean section or hysterectomy, and from non-pregnant, 14, 18, 22 day (term) gestation or labouring rats. In pregnant rat and human myometrium dose-dependent and significant decreases in spontaneous contractions were seen with increasing concentrations of GYY4137, which also reduced underlying Ca transients. GYY4137 and NaHS significantly reduced oxytocin-stimulated and high-K depolarised contractions as well as spontaneous activity. Their inhibitory effects increased as gestation advanced, but were abruptly reversed in labour. Glibenclamide, an inhibitor of ATP-sensitive potassium (K ATP) channels, abolished the inhibitory effect of GYY4137. These data suggest (i) H 2S contributes to uterine quiescence from mid-gestation until labor, (ii) that H 2S affects L-type calcium channels and K ATP channels reducing Ca entry and thereby myometrial contractions, (iii) add to the evidence that H 2S plays a physiological role in relaxing myometrium, and thus (iv) H 2S is an attractive target for therapeutic manipulation of human myometrial contractility.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase.

          Studies of nitric oxide over the past two decades have highlighted the fundamental importance of gaseous signaling molecules in biology and medicine. The physiological role of other gases such as carbon monoxide and hydrogen sulfide (H2S) is now receiving increasing attention. Here we show that H2S is physiologically generated by cystathionine gamma-lyase (CSE) and that genetic deletion of this enzyme in mice markedly reduces H2S levels in the serum, heart, aorta, and other tissues. Mutant mice lacking CSE display pronounced hypertension and diminished endothelium-dependent vasorelaxation. CSE is physiologically activated by calcium-calmodulin, which is a mechanism for H2S formation in response to vascular activation. These findings provide direct evidence that H2S is a physiologic vasodilator and regulator of blood pressure.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener.

            Hydrogen sulfide (H(2)S) has been traditionally viewed as a toxic gas. It is also, however, endogenously generated from cysteine metabolism. We attempted to assess the physiological role of H(2)S in the regulation of vascular contractility, the modulation of H(2)S production in vascular tissues, and the underlying mechanisms. Intravenous bolus injection of H(2)S transiently decreased blood pressure of rats by 12- 30 mmHg, which was antagonized by prior blockade of K(ATP) channels. H(2)S relaxed rat aortic tissues in vitro in a K(ATP) channel-dependent manner. In isolated vascular smooth muscle cells (SMCs), H(2)S directly increased K(ATP) channel currents and hyperpolarized membrane. The expression of H(2)S-generating enzyme was identified in vascular SMCs, but not in endothelium. The endogenous production of H(2)S from different vascular tissues was also directly measured with the abundant level in the order of tail artery, aorta and mesenteric artery. Most importantly, H(2)S production from vascular tissues was enhanced by nitric oxide. Our results demonstrate that H(2)S is an important endogenous vasoactive factor and the first identified gaseous opener of K(ATP) channels in vascular SMCs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels.

              Nitric oxide, the classic endothelium-derived relaxing factor (EDRF), acts through cyclic GMP and calcium without notably affecting membrane potential. A major component of EDRF activity derives from hyperpolarization and is termed endothelium-derived hyperpolarizing factor (EDHF). Hydrogen sulfide (H(2)S) is a prominent EDRF, since mice lacking its biosynthetic enzyme, cystathionine γ-lyase (CSE), display pronounced hypertension with deficient vasorelaxant responses to acetylcholine. The purpose of this study was to determine if H(2)S is a major physiological EDHF. We now show that H(2)S is a major EDHF because in blood vessels of CSE-deleted mice, hyperpolarization is virtually abolished. H(2)S acts by covalently modifying (sulfhydrating) the ATP-sensitive potassium channel, as mutating the site of sulfhydration prevents H(2)S-elicited hyperpolarization. The endothelial intermediate conductance (IK(Ca)) and small conductance (SK(Ca)) potassium channels mediate in part the effects of H(2)S, as selective IK(Ca) and SK(Ca) channel inhibitors, charybdotoxin and apamin, inhibit glibenclamide-insensitive, H(2)S-induced vasorelaxation. H(2)S is a major EDHF that causes vascular endothelial and smooth muscle cell hyperpolarization and vasorelaxation by activating the ATP-sensitive, intermediate conductance and small conductance potassium channels through cysteine S-sulfhydration. Because EDHF activity is a principal determinant of vasorelaxation in numerous vascular beds, drugs influencing H(2)S biosynthesis offer therapeutic potential.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                27 September 2012
                : 7
                : 9
                : e46278
                Affiliations
                [1]Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
                Fudan University, China
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: HR SW. Performed the experiments: HR. Analyzed the data: HR. Contributed reagents/materials/analysis tools: SW. Wrote the paper: HR SW.

                Article
                PONE-D-12-17308
                10.1371/journal.pone.0046278
                3459845
                23029460
                24e2ec93-7683-472d-9b3f-6352c703edd4
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 13 June 2012
                : 29 August 2012
                Page count
                Pages: 12
                Funding
                H.R. was the recipient of a Wellcome Trust Prize Studentship (Ref. WT086736M, www.wellcome.ac.uk/). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Musculoskeletal System
                Muscle
                Muscle Types
                Reproductive System
                Reproductive Physiology
                Model Organisms
                Animal Models
                Rat
                Medicine
                Anatomy and Physiology
                Musculoskeletal System
                Muscle
                Muscle Functions
                Muscle Types
                Reproductive System
                Reproductive Physiology
                Obstetrics and Gynecology
                Pregnancy
                Pregnancy Complications
                Labor and Delivery
                Women's Health

                Uncategorized
                Uncategorized

                Comments

                Comment on this article