+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      Metformin Suppresses Diabetes-Accelerated Atherosclerosis via the Inhibition of Drp1-Mediated Mitochondrial Fission

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Metformin is a widely used antidiabetic drug that exerts cardiovascular protective effects in patients with diabetes. How metformin protects against diabetes-related cardiovascular diseases remains poorly understood. Here, we show that metformin abated the progression of diabetes-accelerated atherosclerosis by inhibiting mitochondrial fission in endothelial cells. Metformin treatments markedly reduced mitochondrial fragmentation, mitigated mitochondrial-derived superoxide release, improved endothelial-dependent vasodilation, inhibited vascular inflammation, and suppressed atherosclerotic lesions in streptozotocin (STZ)-induced diabetic ApoE −/− mice. In high glucose–exposed endothelial cells, metformin treatment and adenoviral overexpression of constitutively active AMPK downregulated mitochondrial superoxide, lowered levels of dynamin-related protein (Drp1) and its translocation into mitochondria, and prevented mitochondrial fragmentation. In contrast, AMPK-α2 deficiency abolished the effects of metformin on Drp1 expression, oxidative stress, and atherosclerosis in diabetic ApoE −/−/AMPK-α2 −/− mice, indicating that metformin exerts an antiatherosclerotic action in vivo via the AMPK-mediated blockage of Drp1-mediated mitochondrial fission. Consistently, mitochondrial division inhibitor 1, a potent and selective Drp1 inhibitor, reduced mitochondrial fragmentation, attenuated oxidative stress, ameliorated endothelial dysfunction, inhibited inflammation, and suppressed atherosclerosis in diabetic mice. These findings show that metformin attenuated the development of atherosclerosis by reducing Drp1-mediated mitochondrial fission in an AMPK-dependent manner. Suppression of mitochondrial fission may be a therapeutic approach for treating macrovascular complications in patients with diabetes.

          Related collections

          Most cited references 34

          • Record: found
          • Abstract: found
          • Article: not found

          Altered mitochondrial dynamics contributes to endothelial dysfunction in diabetes mellitus.

          Endothelial dysfunction contributes to the development of atherosclerosis in patients with diabetes mellitus, but the mechanisms of endothelial dysfunction in this setting are incompletely understood. Recent studies have shown altered mitochondrial dynamics in diabetes mellitus with increased mitochondrial fission and production of reactive oxygen species. We investigated the contribution of altered dynamics to endothelial dysfunction in diabetes mellitus. We observed mitochondrial fragmentation (P=0.002) and increased expression of fission-1 protein (Fis1; P<0.0001) in venous endothelial cells freshly isolated from patients with diabetes mellitus (n=10) compared with healthy control subjects (n=9). In cultured human aortic endothelial cells exposed to 30 mmol/L glucose, we observed a similar loss of mitochondrial networks and increased expression of Fis1 and dynamin-related protein-1 (Drp1), proteins required for mitochondrial fission. Altered mitochondrial dynamics was associated with increased mitochondrial reactive oxygen species production and a marked impairment of agonist-stimulated activation of endothelial nitric oxide synthase and cGMP production. Silencing Fis1 or Drp1 expression with siRNA blunted high glucose-induced alterations in mitochondrial networks, reactive oxygen species production, endothelial nitric oxide synthase activation, and cGMP production. An intracellular reactive oxygen species scavenger provided no additional benefit, suggesting that increased mitochondrial fission may impair endothelial function via increased reactive oxygen species. These findings implicate increased mitochondrial fission as a contributing mechanism for endothelial dysfunction in diabetic states.
            • Record: found
            • Abstract: found
            • Article: not found

            Sirtuin 3-dependent mitochondrial dynamic improvements protect against acute kidney injury.

            Acute kidney injury (AKI) is a public health concern with an annual mortality rate that exceeds those of breast and prostate cancer, heart failure, and diabetes combined. Oxidative stress and mitochondrial damage are drivers of AKI-associated pathology; however, the pathways that mediate these events are poorly defined. Here, using a murine cisplatin-induced AKI model, we determined that both oxidative stress and mitochondrial damage are associated with reduced levels of renal sirtuin 3 (SIRT3). Treatment with the AMPK agonist AICAR or the antioxidant agent acetyl-l-carnitine (ALCAR) restored SIRT3 expression and activity, improved renal function, and decreased tubular injury in WT animals, but had no effect in Sirt3-/- mice. Moreover, Sirt3-deficient mice given cisplatin experienced more severe AKI than WT animals and died, and neither AICAR nor ALCAR treatment prevented death in Sirt3-/- AKI mice. In cultured human tubular cells, cisplatin reduced SIRT3, resulting in mitochondrial fragmentation, while restoration of SIRT3 with AICAR and ALCAR improved cisplatin-induced mitochondrial dysfunction. Together, our results indicate that SIRT3 is protective against AKI and suggest that enhancing SIRT3 to improve mitochondrial dynamics has potential as a strategy for improving outcomes of renal injury.
              • Record: found
              • Abstract: found
              • Article: not found

              NADPH oxidase 1 plays a key role in diabetes mellitus-accelerated atherosclerosis.

              In diabetes mellitus, vascular complications such as atherosclerosis are a major cause of death. The key underlying pathomechanisms are unclear. However, hyperglycemic oxidative stress derived from NADPH oxidase (Nox), the only known dedicated enzyme to generate reactive oxygen species appears to play a role. Here we identify the Nox1 isoform as playing a key and pharmacologically targetable role in the accelerated development of diabetic atherosclerosis. Human aortic endothelial cells exposed to hyperglycemic conditions showed increased expression of Nox1, oxidative stress, and proinflammatory markers in a Nox1-siRNA reversible manner. Similarly, the specific Nox inhibitor, GKT137831, prevented oxidative stress in response to hyperglycemia in human aortic endothelial cells. To examine these observations in vivo, we investigated the role of Nox1 on plaque development in apolipoprotein E-deficient mice 10 weeks after induction of diabetes mellitus. Deletion of Nox1, but not Nox4, had a profound antiatherosclerotic effect correlating with reduced reactive oxygen species formation, attenuation of chemokine expression, vascular adhesion of leukocytes, macrophage infiltration, and reduced expression of proinflammatory and profibrotic markers. Similarly, treatment of diabetic apolipoprotein E-deficient mice with GKT137831 attenuated atherosclerosis development. These studies identify a major pathological role for Nox1 and suggest that Nox1-dependent oxidative stress is a promising target for diabetic vasculopathies, including atherosclerosis.

                Author and article information

                American Diabetes Association
                January 2017
                13 October 2016
                : 66
                : 1
                : 193-205
                1Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA
                2Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
                Author notes
                Corresponding author: Ming-Hui Zou, mzou@ 123456gsu.edu , or Zhonglin Xie, zxie@ 123456gsu.edu .

                Q.W. and M.Z. contributed equally to this work.

                © 2017 by the American Diabetes Association.

                Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at http://www.diabetesjournals.org/content/license.

                Page count
                Figures: 8, Tables: 0, Equations: 0, References: 52, Pages: 13
                Funded by: National Heart, Lung and Blood Institute, DOI http://dx.doi.org/10.13039/100000050;
                Award ID: HL-128014
                Award ID: HL-132500
                Award ID: HL-079584
                Award ID: HL-080499
                Award ID: HL-089920
                Award ID: HL-110488
                Funded by: National Institute on Aging, DOI http://dx.doi.org/10.13039/100000049;
                Award ID: AG-047776

                Endocrinology & Diabetes


                Comment on this article