1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Classification of Aflatoxin B1 Concentration of Single Maize Kernel Based on Near-Infrared Hyperspectral Imaging and Feature Selection

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A rapid and nondestructive method is greatly important for the classification of aflatoxin B1 (AFB1) concentration of single maize kernel to satisfy the ever-growing needs of consumers for food safety. A novel method for classification of AFB1 concentration of single maize kernel was developed on the basis of the near-infrared (NIR) hyperspectral imaging (1100–2000 nm). Four groups of AFB1 samples with different concentrations (10, 20, 50, and 100 ppb) and one group of control samples were prepared, which were preprocessed with Savitzky–Golay (SG) smoothing and first derivative (FD) algorithms for their raw NIR spectra. A key wavelength selection method, combining the variance and order of average spectral intensity, was proposed on the basis of pretreated spectra. Moreover, principal component analysis (PCA) was conducted to reduce the dimensionality of hyperspectral data. Finally, a classification model for AFB1 concentrations was developed through linear discriminant analysis (LDA), combined with five key wavelengths and the first three PCs. The results show that the proposed method achieved an ideal performance for classifying AFB1 concentrations in a single maize kernel with overall accuracy, with an F1-score and Kappa values of 95.56%, 0.9554, and 0.9444, respectively, as well as the test accuracy yield of 88.67% for independent validation samples. The combinations of variance and order of average spectral intensity can be used for key wavelength selection which, combined with PCA, can achieve an ideal dimensionality reduction effect for model development. The findings of this study have positive significance for the classification of AFB1 concentration of maize kernels.

          Related collections

          Most cited references 38

          • Record: found
          • Abstract: not found
          • Article: not found

          Smoothing and Differentiation of Data by Simplified Least Squares Procedures.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rapid detection of kernel rots and mycotoxins in maize by near-infrared reflectance spectroscopy.

            Near-infrared (NIR) spectroscopy is a practical spectroscopic procedure for the detection of organic compounds in matter. It is particularly useful because of its nondestructiveness, accuracy, rapid response, and easy operation. This work assesses the applicability of NIR for the rapid identification of micotoxigenic fungi and their toxic metabolites produced in naturally and artificially contaminated products. Two hundred and eighty maize samples were collected both from naturally contaminated maize crops grown in 16 areas in north-central Italy and from ears artificially inoculated with Fusarium verticillioides. All samples were analyzed for fungi infection, ergosterol, and fumonisin B1 content. The results obtained indicated that NIR could accurately predict the incidence of kernels infected by fungi, and by F. verticillioides in particular, as well as the quantity of ergosterol and fumonisin B1 in the meal. The statistics of the calibration and of the cross-validation for mold infection and for ergosterol and fumonisin B1 contents were significant. The best predictive ability for the percentage of global fungal infection and F. verticillioides was obtained using a calibration model utilizing maize kernels (r2 = 0.75 and SECV = 7.43) and maize meals (r2 = 0.79 and SECV = 10.95), respectively. This predictive performance was confirmed by the scatter plot of measured F. verticillioides infection versus NIR-predicted values in maize kernel samples (r2 = 0.80). The NIR methodology can be applied for monitoring mold contamination in postharvest maize, in particular F. verticilliodes and fumonisin presence, to distinguish contaminated lots from clean ones, and to avoid cross-contamination with other material during storage and may become a powerful tool for monitoring the safety of the food supply.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Fruit Quality Evaluation Using Spectroscopy Technology: A Review

              An overview is presented with regard to applications of visible and near infrared (Vis/NIR) spectroscopy, multispectral imaging and hyperspectral imaging techniques for quality attributes measurement and variety discrimination of various fruit species, i.e., apple, orange, kiwifruit, peach, grape, strawberry, grape, jujube, banana, mango and others. Some commonly utilized chemometrics including pretreatment methods, variable selection methods, discriminant methods and calibration methods are briefly introduced. The comprehensive review of applications, which concentrates primarily on Vis/NIR spectroscopy, are arranged according to fruit species. Most of the applications are focused on variety discrimination or the measurement of soluble solids content (SSC), acidity and firmness, but also some measurements involving dry matter, vitamin C, polyphenols and pigments have been reported. The feasibility of different spectral modes, i.e., reflectance, interactance and transmittance, are discussed. Optimal variable selection methods and calibration methods for measuring different attributes of different fruit species are addressed. Special attention is paid to sample preparation and the influence of the environment. Areas where further investigation is needed and problems concerning model robustness and model transfer are identified.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Sensors (Basel)
                Sensors (Basel)
                sensors
                Sensors (Basel, Switzerland)
                MDPI
                1424-8220
                22 June 2021
                July 2021
                : 21
                : 13
                Affiliations
                [1 ]National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, Hefei 230601, China; p18101007@ 123456stu.ahu.edu.cn
                [2 ]Beijing Research Center of Intelligent Equipment for Agriculture, Beijing 100097, China; huangwq@ 123456nercita.org.cn (W.H.); tianx@ 123456nercita.org.cn (X.T.)
                Author notes
                [* ]Correspondence: dliang@ 123456ahu.edu.cn
                Article
                sensors-21-04257
                10.3390/s21134257
                8271414
                34206281
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                Categories
                Article

                Comments

                Comment on this article