11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Incidence, clinical implications and impact on public health of infections with Shigella spp. and entero-invasive Escherichia coli (EIEC): results of a multicenter cross-sectional study in the Netherlands during 2016–2017

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Shigella spp. and entero-invasive E. coli (EIEC) use the same invasive mechanism to cause diarrheal diseases. Public health regulations apply only to Shigella spp. infections, but are hampered by the lack of simple methods to distinguish them from EIEC. In the last decades, molecular methods for detecting Shigella spp. and EIEC were implemented in medical microbiological laboratories (MMLs) . However, shigellosis cases identified with molecular techniques alone are not notifiable in most countries. Our study investigates the impact of EIEC versus Shigella spp. infections and molecular diagnosed shigellosis versus culture confirmed shigellosis for re-examination of the rationale for the current public health regulations.

          Methods

          In this multicenter cross-sectional study, fecal samples of patients suspected for gastro-enteritis, referred to 15 MMLs in the Netherlands, were screened by PCR for Shigella spp. or EIEC. Samples were cultured to discriminate between the two pathogens. We compared risk factors, symptoms, severity of disease, secondary infections and socio-economic consequences for (i) culture-confirmed Shigella spp. versus culture-confirmed EIEC cases (ii) culture positive versus PCR positive only shigellosis cases.

          Results

          In 2016–2017, 777 PCR positive fecal samples with patient data were included, 254 of these were culture-confirmed shigellosis cases and 32 were culture-confirmed EIEC cases. EIEC cases were more likely to report ingestion of contaminated food and were less likely to be men who have sex with men (MSM). Both pathogens were shown to cause serious disease although differences in specific symptoms were observed. Culture-negative but PCR positive cases were more likely report travel or ingestion of contaminated food and were less likely to be MSM than culture-positive cases. Culture-negative cases were more likely to suffer from multiple symptoms. No differences in degree of secondary infections were observed between Shigella spp. and EIEC, and culture-negative and culture-positive cases.

          Conclusions

          No convincing evidence was found to support the current guidelines that employs different measures based on species or detection method. Therefore, culture and molecular detection methods for Shigella spp. and EIEC should be considered equivalent for case definition and public health regulations regarding shigellosis. Differences were found regarding risks factors, indicating that different prevention strategies may be required.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Morbidity and mortality due to shigella and enterotoxigenic Escherichia coli diarrhoea: the Global Burden of Disease Study 1990–2016

          Summary Background Shigella and enterotoxigenic Escherichia coli (ETEC) are bacterial pathogens that are frequently associated with diarrhoeal disease, and are a significant cause of mortality and morbidity worldwide. The Global Burden of Diseases, Injuries, and Risk Factors study 2016 (GBD 2016) is a systematic, scientific effort to quantify the morbidity and mortality due to over 300 causes of death and disability. We aimed to analyse the global burden of shigella and ETEC diarrhoea according to age, sex, geography, and year from 1990 to 2016. Methods We modelled shigella and ETEC-related mortality using a Bayesian hierarchical modelling platform that evaluates a wide range of covariates and model types on the basis of vital registration and verbal autopsy data. We used a compartmental meta-regression tool to model the incidence of shigella and ETEC, which enforces an association between incidence, prevalence, and remission on the basis of scientific literature, population representative surveys, and health-care data. We calculated 95% uncertainty intervals (UIs) for the point estimates. Findings Shigella was the second leading cause of diarrhoeal mortality in 2016 among all ages, accounting for 212 438 deaths (95% UI 136 979–326 913) and about 13·2% (9·2–17·4) of all diarrhoea deaths. Shigella was responsible for 63 713 deaths (41 191–93 611) among children younger than 5 years and was frequently associated with diarrhoea across all adult age groups, increasing in elderly people, with broad geographical distribution. ETEC was the eighth leading cause of diarrhoea mortality in 2016 among all age groups, accounting for 51 186 deaths (26 757–83 064) and about 3·2% (1·8–4·7) of diarrhoea deaths. ETEC was responsible for about 4·2% (2·2–6·8) of diarrhoea deaths in children younger than 5 years. Interpretation The health burden of bacterial diarrhoeal pathogens is difficult to estimate. Despite existing prevention and treatment options, they remain a major cause of morbidity and mortality globally. Additional emphasis by public health officials is needed on a reduction in disease due to shigella and ETEC to reduce disease burden. Funding Bill & Melinda Gates Foundation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular evolutionary relationships of enteroinvasive Escherichia coli and Shigella spp.

            Enteroinvasive Escherichia coli (EIEC), a distinctive pathogenic form of E. coli causing dysentery, is similar in many properties to bacteria placed in the four species of Shigella. Shigella has been separated as a genus but in fact comprises several clones of E. coli. The evolutionary relationships of 32 EIEC strains of 12 serotypes have been determined by sequencing of four housekeeping genes and two plasmid genes which were used previously to determine the relationships of Shigella strains. The EIEC strains were grouped in four clusters with one outlier strain, indicating independent derivation of EIEC several times. Three of the four clusters contain more than one O antigen type. One EIEC strain (an O112ac:H- strain) was found in Shigella cluster 3 but is not identical to the Shigella cluster 3 D2 and B15 strains with the same O antigen. Two forms of the virulence plasmid pINV have been identified in Shigella strains by using the sequences of ipgD and mxiA genes, and all but two of our EIEC strains have pINV A. The EIEC strains were grouped in two subclusters with a very low level of variation, generally not intermingled with Shigella pINV A strains. The EIEC clusters based on housekeeping genes were reflected in the plasmid gene sequences, with some exceptions. Two strains were found in the pINV B form by using the ipgD sequence, with one strain having an mxiA sequence similar to the divergent sequence of D1. Clearly, EIEC and Shigella spp. form a pathovar of E. coli.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of Escherichia coli and Shigella Species from Whole-Genome Sequences.

              Escherichia coli and Shigella species are closely related and genetically constitute the same species. Differentiating between these two pathogens and accurately identifying the four species of Shigella are therefore challenging. The organism-specific bioinformatics whole-genome sequencing (WGS) typing pipelines at Public Health England are dependent on the initial identification of the bacterial species by use of a kmer-based approach. Of the 1,982 Escherichia coli and Shigella sp. isolates analyzed in this study, 1,957 (98.4%) had concordant results by both traditional biochemistry and serology (TB&S) and the kmer identification (ID) derived from the WGS data. Of the 25 mismatches identified, 10 were enteroinvasive E. coli isolates that were misidentified as Shigella flexneri or S. boydii by the kmer ID, and 8 were S. flexneri isolates misidentified by TB&S as S. boydii due to nonfunctional S. flexneri O antigen biosynthesis genes. Analysis of the population structure based on multilocus sequence typing (MLST) data derived from the WGS data showed that the remaining discrepant results belonged to clonal complex 288 (CC288), comprising both S. boydii and S. dysenteriae strains. Mismatches between the TB&S and kmer ID results were explained by the close phylogenetic relationship between the two species and were resolved with reference to the MLST data. Shigella can be differentiated from E. coli and accurately identified to the species level by use of kmer comparisons and MLST. Analysis of the WGS data provided explanations for the discordant results between TB&S and WGS data, revealed the true phylogenetic relationships between different species of Shigella, and identified emerging pathoadapted lineages.
                Bookmark

                Author and article information

                Contributors
                maaike.van.den.beld@rivm.nl
                Journal
                BMC Infect Dis
                BMC Infect. Dis
                BMC Infectious Diseases
                BioMed Central (London )
                1471-2334
                9 December 2019
                9 December 2019
                2019
                : 19
                : 1037
                Affiliations
                [1 ]ISNI 0000 0001 2208 0118, GRID grid.31147.30, Infectious Disease Research, Diagnostics and laboratory Surveillance, Centre for Infectious Disease Control, , National Institute for Public Health and the Environment, ; Bilthoven, The Netherlands
                [2 ]ISNI 0000 0000 9558 4598, GRID grid.4494.d, Department of Medical Microbiology and Infection Prevention, , University of Groningen, University Medical Center Groningen, ; Groningen, the Netherlands
                [3 ]Public health service GGD Groningen, Groningen, the Netherlands
                [4 ]ISNI 0000 0001 2208 0118, GRID grid.31147.30, Department of Statistics, Informatics and Mathematical Modeling, , National Institute for Public Health and the Environment (RIVM), ; Bilthoven, the Netherlands
                [5 ]GRID grid.491139.7, Certe, Department of Medical Microbiology, ; Groningen, the Netherlands
                [6 ]ISNI 0000 0000 9418 9094, GRID grid.413928.5, Public health service GGD Amsterdam, ; Amsterdam, the Netherlands
                [7 ]ISNI 0000 0001 2208 0118, GRID grid.31147.30, National Coordination Centre for Communicable Disease Control, Centre for Infectious Disease Control, , National Institute for Public Health and the Environment, ; Bilthoven, The Netherlands
                [8 ]ISNI 0000 0001 2208 0118, GRID grid.31147.30, Infectious Diseases, Epidemiology and Surveillance, Centre for Infectious Disease Control, , National Institute for Public Health and the Environment, ; Bilthoven, the Netherlands
                Author information
                http://orcid.org/0000-0001-8720-8434
                Article
                4659
                10.1186/s12879-019-4659-y
                6902317
                31818261
                24ea52fb-61f3-4689-9e9e-088af7b4fba0
                © The Author(s). 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 6 September 2019
                : 25 November 2019
                Funding
                Funded by: Dutch National Institute for Public Health for local public health services
                Award ID: Not applicable
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2019

                Infectious disease & Microbiology
                shigella,shigellosis,entero-invasive escherichia coli,eiec,clinical implications,public health,incidence,infectious disease control,guidelines,case definition

                Comments

                Comment on this article