1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      First indication of Japanese mitten crabs in Europe and cryptic genetic diversity of invasive Chinese mitten crabs

      , , ,

      NeoBiota

      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Chinese mitten crab ( Eriocheir sinensis) is a prominent aquatic invader with substantial negative economic and environmental impacts. The aim of the present study was to re-evaluate the genetic diversity of mitten crabs throughout their native and invaded ranges based on publicly available sequence data, and assess if multiple introductions or rapid adaptation could be responsible for biologically divergent mitten crabs in Northern Europe. We assembled available genetic data of a fragment of the mitochondrial cytochrome c oxidase subunit one gene (COI) for all species of the genus Eriocheir. We applied phylogenetic and population genetic analyses to compare native and invasive populations, and to identify possible source populations. The phylogenetic reconstruction revealed that five COI sequences from Europe, morphologically identified as Chinese mitten crab, actually belong to the Japanese mitten crab ( Eriocheir japonica), representing the first indication of its presence in European waters. All other COI sequences from Europe could unambiguously be assigned to the Chinese mitten crab. In some Northern German populations of Chinese mitten crabs, genetic diversity was surprisingly high, due to seven unique haplotypes encoding several amino acid substitutions. This diversity may reflect a cryptic introduction from an unsampled native location, or rapid adaptation in the invaded range. Based on the genetic diversity shared between native and introduced range, Feiyunjiang, a tributary of the Yangtze River, emerges as a plausible source population for the original introduction of Chinese mitten crabs to Europe. This study highlights the complex and dynamic invasion processes of mitten crabs in Europe. We urge to further monitor mitten crab invasions using genetic tools.

          Related collections

          Most cited references 47

          • Record: found
          • Abstract: not found
          • Article: not found

          The hitch-hiking effect of a favourable gene

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genetic variation increases during biological invasion by a Cuban lizard.

            A genetic paradox exists in invasion biology: how do introduced populations, whose genetic variation has probably been depleted by population bottlenecks, persist and adapt to new conditions? Lessons from conservation genetics show that reduced genetic variation due to genetic drift and founder effects limits the ability of a population to adapt, and small population size increases the risk of extinction. Nonetheless, many introduced species experiencing these same conditions during initial introductions persist, expand their ranges, evolve rapidly and become invasive. To address this issue, we studied the brown anole, a worldwide invasive lizard. Genetic analyses indicate that at least eight introductions have occurred in Florida from across this lizard's native range, blending genetic variation from different geographic source populations and producing populations that contain substantially more, not less, genetic variation than native populations. Moreover, recently introduced brown anole populations around the world originate from Florida, and some have maintained these elevated levels of genetic variation. Here we show that one key to invasion success may be the occurrence of multiple introductions that transform among-population variation in native ranges to within-population variation in introduced areas. Furthermore, these genetically variable populations may be particularly potent sources for introductions elsewhere. The growing problem of invasive species introductions brings considerable economic and biological costs. If these costs are to be mitigated, a greater understanding of the causes, progression and consequences of biological invasions is needed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America.

              Cryptic invasions are a largely unrecognized type of biological invasion that lead to underestimation of the total numbers and impacts of invaders because of the difficulty in detecting them. The distribution and abundance of Phragmites australis in North America has increased dramatically over the past 150 years. This research tests the hypothesis that a non-native strain of Phragmites is responsible for the observed spread. Two noncoding chloroplast DNA regions were sequenced for samples collected worldwide, throughout the range of Phragmites. Modern North American populations were compared with historical ones from herbarium collections. Results indicate that an introduction has occurred, and the introduced type has displaced native types as well as expanded to regions previously not known to have Phragmites. Native types apparently have disappeared from New England and, while still present, may be threatened in other parts of North America.
                Bookmark

                Author and article information

                Journal
                NeoBiota
                NB
                Pensoft Publishers
                1314-2488
                1619-0033
                August 28 2019
                August 28 2019
                : 50
                : 1-29
                Article
                10.3897/neobiota.50.34881
                © 2019

                Comments

                Comment on this article