72
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Insights into the Dekkera bruxellensis Genomic Landscape: Comparative Genomics Reveals Variations in Ploidy and Nutrient Utilisation Potential amongst Wine Isolates

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The yeast Dekkera bruxellensis is a major contaminant of industrial fermentations, such as those used for the production of biofuel and wine, where it outlasts and, under some conditions, outcompetes the major industrial yeast Saccharomyces cerevisiae. In order to investigate the level of inter-strain variation that is present within this economically important species, the genomes of four diverse D. bruxellensis isolates were compared. While each of the four strains was shown to contain a core diploid genome, which is clearly sufficient for survival, two of the four isolates have a third haploid complement of chromosomes. The sequences of these additional haploid genomes were both highly divergent from those comprising the diploid core and divergent between the two triploid strains. Similar to examples in the Saccharomyces spp. clade, where some allotriploids have arisen on the basis of enhanced ability to survive a range of environmental conditions, it is likely these strains are products of two independent hybridisation events that may have involved multiple species or distinct sub-species of Dekkera. Interestingly these triploid strains represent the vast majority (92%) of isolates from across the Australian wine industry, suggesting that the additional set of chromosomes may confer a selective advantage in winery environments that has resulted in these hybrid strains all-but replacing their diploid counterparts in Australian winery settings. In addition to the apparent inter-specific hybridisation events, chromosomal aberrations such as strain-specific insertions and deletions and loss-of-heterozygosity by gene conversion were also commonplace. While these events are likely to have affected many phenotypes across these strains, we have been able to link a specific deletion to the inability to utilise nitrate by some strains of D. bruxellensis, a phenotype that may have direct impacts in the ability for these strains to compete with S. cerevisiae.

          Author Summary

          The yeast D. bruxellensis is of great importance in biofuel and fermented beverage industries, largely as a contaminant and/or spoilage organism. Its lifestyle is not unlike that of the wine/brewing/baking yeast S. cerevisiae, with independent evolutionary pathways having led to this convergence; these species are phylogenetically very distant. Unlike S. cerevisiae, D. bruxellensis is highly intractable in the laboratory; it is difficult to mate and to transform, making even the most basic genetic analysis very difficult. Thus we still have a great deal to learn about this economically important yeast. The latest gene sequencing technologies are, however, providing a means of addressing these limitations. The current manuscript describes a comparative genomics approach to providing insights into inter-strain variations that shape the genomic landscape of D. bruxellensis. Like other industrial yeasts, it has a diploid core genome, but there are also triploid isolates which possess the core diploid complement with an additional, more distantly related, full set of chromosomes. Evidence presented in this paper suggests that this form of triploidy has arisen more than once in the evolutionary history of D. bruxellensis, and it confers a selective advantage for strains of this yeast isolated from wineries.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast.

          Domestication of plants and animals promoted humanity's transition from nomadic to sedentary lifestyles, demographic expansion, and the emergence of civilizations. In contrast to the well-documented successes of crop and livestock breeding, processes of microbe domestication remain obscure, despite the importance of microbes to the production of food, beverages, and biofuels. Lager-beer, first brewed in the 15th century, employs an allotetraploid hybrid yeast, Saccharomyces pastorianus (syn. Saccharomyces carlsbergensis), a domesticated species created by the fusion of a Saccharomyces cerevisiae ale-yeast with an unknown cryotolerant Saccharomyces species. We report the isolation of that species and designate it Saccharomyces eubayanus sp. nov. because of its resemblance to Saccharomyces bayanus (a complex hybrid of S. eubayanus, Saccharomyces uvarum, and S. cerevisiae found only in the brewing environment). Individuals from populations of S. eubayanus and its sister species, S. uvarum, exist in apparent sympatry in Nothofagus (Southern beech) forests in Patagonia, but are isolated genetically through intrinsic postzygotic barriers, and ecologically through host-preference. The draft genome sequence of S. eubayanus is 99.5% identical to the non-S. cerevisiae portion of the S. pastorianus genome sequence and suggests specific changes in sugar and sulfite metabolism that were crucial for domestication in the lager-brewing environment. This study shows that combining microbial ecology with comparative genomics facilitates the discovery and preservation of wild genetic stocks of domesticated microbes to trace their history, identify genetic changes, and suggest paths to further industrial improvement.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rapid expansion and functional divergence of subtelomeric gene families in yeasts.

            Subtelomeres, regions proximal to telomeres, exhibit characteristics unique to eukaryotic genomes. Genes residing in these loci are subject to epigenetic regulation and elevated rates of both meiotic and mitotic recombination. However, most genome sequences do not contain assembled subtelomeric sequences, and, as a result, subtelomeres are often overlooked in comparative genomics. We studied the evolution and functional divergence of subtelomeric gene families in the yeast lineage. Our computational results show that subtelomeric families are evolving and expanding much faster than families that do not contain subtelomeric genes. Focusing on three related subtelomeric MAL gene families involved in disaccharide metabolism that show typical patterns of rapid expansion and evolution, we show experimentally how frequent duplication events followed by functional divergence yield novel alleles that allow the metabolism of different carbohydrates. Taken together, our computational and experimental analyses show that the extraordinary instability of eukaryotic subtelomeres supports rapid adaptation to novel niches by promoting gene recombination and duplication followed by functional divergence of the alleles. Copyright 2010 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reconstruction of the genome origins and evolution of the hybrid lager yeast Saccharomyces pastorianus.

              Inter-specific hybridization leading to abrupt speciation is a well-known, common mechanism in angiosperm evolution; only recently, however, have similar hybridization and speciation mechanisms been documented to occur frequently among the closely related group of sensu stricto Saccharomyces yeasts. The economically important lager beer yeast Saccharomyces pastorianus is such a hybrid, formed by the union of Saccharomyces cerevisiae and Saccharomyces bayanus-related yeasts; efforts to understand its complex genome, searching for both biological and brewing-related insights, have been underway since its hybrid nature was first discovered. It had been generally thought that a single hybridization event resulted in a unique S. pastorianus species, but it has been recently postulated that there have been two or more hybridization events. Here, we show that there may have been two independent origins of S. pastorianus strains, and that each independent group--defined by characteristic genome rearrangements, copy number variations, ploidy differences, and DNA sequence polymorphisms--is correlated with specific breweries and/or geographic locations. Finally, by reconstructing common ancestral genomes via array-CGH data analysis and by comparing representative DNA sequences of the S. pastorianus strains with those of many different S. cerevisiae isolates, we have determined that the most likely S. cerevisiae ancestral parent for each of the independent S. pastorianus groups was an ale yeast, with different, but closely related ale strains contributing to each group's parentage.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                February 2014
                13 February 2014
                : 10
                : 2
                : e1004161
                Affiliations
                [1 ]The Australian Wine Research Institute, Adelaide, Australia
                [2 ]University of Adelaide, Adelaide, Australia
                Harvard University, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: ARB PJC CDC. Performed the experiments: ARB RZ. Analyzed the data: ARB RZ CDC. Wrote the paper: ARB RZ PJC CDC.

                Article
                PGENETICS-D-13-02158
                10.1371/journal.pgen.1004161
                3923673
                24550744
                24fb407d-9590-40a3-b877-3af65effcc1d
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 9 August 2013
                : 21 December 2013
                Page count
                Pages: 11
                Funding
                Research at the Australian Wine Research Institute is funded by Australia's grapegrowers and winemakers through their not-for-profit investment body, The Grape and Wine Research Development Corporation, with matching funding from the Australian government. Omics and Systems biology research at the AWRI uses resources provided as part of the National Collaborative Research Infrastructure Strategy (NCRIS), an initiative of the Australian Government, in addition to funds from the South Australian State Government. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Evolutionary biology
                Comparative genomics
                Genomic evolution
                Genomics
                Comparative genomics
                Genome complexity
                Genome evolution
                Genome sequencing
                Microbiology
                Mycology
                Yeast
                Applied microbiology
                Industrial microbiology

                Genetics
                Genetics

                Comments

                Comment on this article