24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Acetylation of insulin receptor substrate-1 is permissive for tyrosine phosphorylation

      research-article
      1 , 1 ,
      BMC Biology
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Insulin receptor substrate (IRS) proteins are key moderators of insulin action. Their specific regulation determines downstream protein-protein interactions and confers specificity on growth factor signalling. Regulatory mechanisms that have been identified include phosphorylation of IRS proteins on tyrosine and serine residues and ubiquitination of lysine residues. This study investigated other potential molecular mechanisms of IRS-1 regulation.

          Results

          Using the sos recruitment yeast two-hybrid system we found that IRS-1 and histone deacetylase 2 (HDAC2) interact in the cytoplasmic compartment of yeast cells. The interaction mapped to the C-terminus of IRS-1 and was confirmed through co-immunoprecipitation in vitro of recombinant IRS-1 and HDAC2. HDAC2 bound to IRS-1 in mammalian cells treated with phorbol ester or after prolonged treatment with insulin/IGF-1 and also in the livers of ob/ob mice but not PTP1B knockout mice. Thus, the association occurs under conditions of compromised insulin signalling. We found that IRS-1 is an acetylated protein, of which the acetylation is increased by treatment of cells with Trichostatin A (TSA), an inhibitor of HDAC activity. TSA-induced increases in acetylation of IRS-1 were concomitant with increases in tyrosine phosphorylation in response to insulin. These effects were confirmed using RNA interference against HDAC2, indicating that HDAC2 specifically prevents phosphorylation of IRS-1 by the insulin receptor.

          Conclusions

          Our results show that IRS-1 is an acetylated protein, a post-translational modification that has not been previously described. Acetylation of IRS-1 is permissive for tyrosine phosphorylation and facilitates insulin-stimulated signal transduction. Specific inhibition of HDAC2 may increase insulin sensitivity in otherwise insulin resistant conditions.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Histone acetyltransferases.

          Transcriptional regulation in eukaryotes occurs within a chromatin setting and is strongly influenced by nucleosomal barriers imposed by histone proteins. Among the well-known covalent modifications of histones, the reversible acetylation of internal lysine residues in histone amino-terminal domains has long been positively linked to transcriptional activation. Recent biochemical and genetic studies have identified several large, multisubunit enzyme complexes responsible for bringing about the targeted acetylation of histones and other factors. This review discusses our current understanding of histone acetyltransferases (HATs) or acetyltransferases (ATs): their discovery, substrate specificity, catalytic mechanism, regulation, and functional links to transcription, as well as to other chromatin-modifying activities. Recent studies underscore unexpected connections to both cellular regulatory processes underlying normal development and differentiation, as well as abnormal processes that lead to oncogenesis. Although the functions of HATs and the mechanisms by which they are regulated are only beginning to be understood, these fundamental processes are likely to have far-reaching implications for human biology and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A.

            (R)-Trichostatin A (TSA) is a Streptomyces product which causes the induction of Friend cell differentiation and specific inhibition of the cell cycle of normal rat fibroblasts in the G1 and G2 phases at the very low concentrations. We found that TSA caused an accumulation of acetylated histone species in a variety of mammalian cell lines. Pulse-labeling experiments indicated that TSA markedly prolonged the in vivo half-life of the labile acetyl groups on histones in mouse mammary gland tumor cells, FM3A. The partially purified histone deacetylase from wild-type FM3A cells was effectively inhibited by TSA in a noncompetitive manner with Ki = 3.4 nM. A newly isolated mutant cell line of FM3A resistant to TSA did not show the accumulation of the acetylated histones in the presence of a higher concentration of TSA. The histone deacetylase preparation from the mutant showed decreased sensitivity to TSA (Ki = 31 nM, noncompetitive). These results clearly indicate that TSA is a potent and specific inhibitor of the histone deacetylase and that the in vivo effect of TSA on cell proliferation and differentiation can be attributed to the inhibition of the enzyme.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bromodomain: an acetyl-lysine binding domain.

              Bromodomains, an extensive family of evolutionarily conserved protein modules originally found in proteins associated with chromatin and in nearly all nuclear histone acetyltransferases, have been recently discovered to function as acetyl-lysine binding domains. More recent structural studies of bromodomain/peptide ligand complexes have enriched our understanding of differences in ligand selectivity of bromodomains. These new findings demonstrate that bromodomain/acetyl-lysine recognition can serve as a pivotal mechanism for regulating protein-protein interactions in numerous cellular processes including chromatin remodeling and transcriptional activation, and reinforce the concept that functional diversity of a conserved protein modular structure is achieved by evolutionary changes of amino acid sequences in the ligand binding site.
                Bookmark

                Author and article information

                Journal
                BMC Biol
                BMC Biology
                BioMed Central (London )
                1741-7007
                2004
                2 November 2004
                : 2
                : 23
                Affiliations
                [1 ]Section of Cell Biology, Department of Biology, Biovitrum AB, SE-112 76, Stockholm, Sweden
                Article
                1741-7007-2-23
                10.1186/1741-7007-2-23
                529456
                15522123
                2501bd93-fc71-4ab0-9682-4d7ec969c1e3
                Copyright © 2004 Kaiser and James; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 7 July 2004
                : 2 November 2004
                Categories
                Research Article

                Life sciences
                Life sciences

                Comments

                Comment on this article