12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enabling technologies and green processes in cyclodextrin chemistry

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          The design of efficient synthetic green strategies for the selective modification of cyclodextrins (CDs) is still a challenging task. Outstanding results have been achieved in recent years by means of so-called enabling technologies, such as microwaves, ultrasound and ball mills, that have become irreplaceable tools in the synthesis of CD derivatives. Several examples of sonochemical selective modification of native α-, β- and γ-CDs have been reported including heterogeneous phase Pd- and Cu-catalysed hydrogenations and couplings. Microwave irradiation has emerged as the technique of choice for the production of highly substituted CD derivatives, CD grafted materials and polymers. Mechanochemical methods have successfully furnished greener, solvent-free syntheses and efficient complexation, while flow microreactors may well improve the repeatability and optimization of critical synthetic protocols.

          Abstract

          Related collections

          Most cited references96

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Nanopore-based Fourth-generation DNA Sequencing Technology

          Nanopore-based sequencers, as the fourth-generation DNA sequencing technology, have the potential to quickly and reliably sequence the entire human genome for less than $1000, and possibly for even less than $100. The single-molecule techniques used by this technology allow us to further study the interaction between DNA and protein, as well as between protein and protein. Nanopore analysis opens a new door to molecular biology investigation at the single-molecule scale. In this article, we have reviewed academic achievements in nanopore technology from the past as well as the latest advances, including both biological and solid-state nanopores, and discussed their recent and potential applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Process engineering with planetary ball mills.

            Planetary ball mills are well known and used for particle size reduction on laboratory and pilot scales for decades while during the last few years the application of planetary ball mills has extended to mechanochemical approaches. Processes inside planetary ball mills are complex and strongly depend on the processed material and synthesis and, thus, the optimum milling conditions have to be assessed for each individual system. The present review focuses on the insight into several parameters like properties of grinding balls, the filling ratio or revolution speed. It gives examples of the aspects of grinding and illustrates some general guidelines to follow for modelling processes in planetary ball mills in terms of refinement, synthesis' yield and contamination from wear. The amount of energy transferred from the milling tools to the powder is significant and hardly measurable for processes in planetary ball mills. Thus numerical simulations based on a discrete-element-method are used to describe the energy transfer to give an adequate description of the process by correlation with experiments. The simulations illustrate the effect of the geometry of planetary ball mills on the energy entry. In addition the imaging of motion patterns inside a planetary ball mill from simulations and video recordings is shown.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sugammadex: another milestone in clinical neuromuscular pharmacology.

              Sugammadex is a revolutionary investigational reversal drug currently undergoing Phase III testing whose introduction into clinical practice may change the face of clinical neuromuscular pharmacology. A modified gamma-cyclodextrin, sugammadex exerts its effect by forming very tight water-soluble complexes at a 1:1 ratio with steroidal neuromuscular blocking drugs (rocuronium > vecuronium > pancuronium). During rocuronium-induced neuromuscular blockade, the IV administration of sugammadex creates a concentration gradient favoring the movement of rocuronium molecules from the neuromuscular junction back into the plasma, which results in a fast recovery of neuromuscular function. Sugammadex is biologically inactive, does not bind to plasma proteins, and appears to be safe and well tolerated. Additionally, it has no effect on acetylcholinesterase or any receptor system in the body. The compound's efficacy as an antagonist does not appear to rely on renal excretion of the cyclodextrin-relaxant complex. Human and animal studies have demonstrated that sugammadex can reverse very deep neuromuscular blockade induced by rocuronium without muscle weakness. Its future clinical use should decrease the incidence of postoperative muscle weakness, and thus contribute to increased patient safety. Sugammadex will also facilitate the use of rocuronium for rapid sequence induction of anesthesia by providing a faster onset-offset profile than that seen with 1.0 mg/kg succinylcholine. Furthermore, no additional anticholinesterase or anticholinergic drugs would be needed for antagonism of residual neuromuscular blockade, which would mean the end of the cardiovascular and other side effects of these compounds. The clinical use of sugammadex promises to eliminate many of the shortcomings in our current practice with regard to the antagonism of rocuronium and possibly other steroidal neuromuscular blockers.
                Bookmark

                Author and article information

                Contributors
                Role: Guest Editor
                Journal
                Beilstein J Org Chem
                Beilstein J Org Chem
                Beilstein Journal of Organic Chemistry
                Beilstein-Institut (Trakehner Str. 7-9, 60487 Frankfurt am Main, Germany )
                1860-5397
                2016
                15 February 2016
                : 12
                : 278-294
                Affiliations
                [1 ]Dipartimento di Scienza e Tecnologia del Farmaco and NIS - Centre for Nanostructured Interfaces and Surfaces, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
                Article
                10.3762/bjoc.12.30
                4778522
                26977187
                25039fee-1d0b-4042-9aea-db50f1e82a81
                Copyright © 2016, Cravotto et al; licensee Beilstein-Institut.

                This is an Open Access article under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                The license is subject to the Beilstein Journal of Organic Chemistry terms and conditions: ( http://www.beilstein-journals.org/bjoc)

                History
                : 31 October 2015
                : 29 January 2016
                Categories
                Review
                Chemistry
                Organic Chemistry

                Organic & Biomolecular chemistry
                ball milling,cyclodextrin,microwaves,synthesis,ultrasound
                Organic & Biomolecular chemistry
                ball milling, cyclodextrin, microwaves, synthesis, ultrasound

                Comments

                Comment on this article