+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The impact of low-level lead toxicity on school performance among children in the Chicago Public Schools: a population-based retrospective cohort study

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Environmental lead exposure poses a risk to educational performance, especially among poor, urban children. Previous studies found low-level lead exposure was a risk factor for diminished academic abilities, however, this study is distinct because of the very large sample size and because it controlled for very low birth weight and early preterm birth–two factors closely associated with lower academic performance. In this study we examined the association between lead concentration in whole blood (B-Pb) of Chicago Public School (CPS) children and their performance on the 3 rd grade Illinois Standard Achievement Tests (ISAT) reading and math scores.


          We examined 58,650 children born in Chicago between 1994 and 1998 who were tested for blood lead concentration between birth and 2006 and enrolled in the 3 rd grade at a CPS school between 2003 and 2006. We linked the Chicago birth registry, the Chicago Blood Lead Registry, and 3 rd grade ISAT scores to examine associations between B-Pb and school performance.


          After adjusting for other predictors of school performance including poverty, race/ethnicity, gender, maternal education and very low birth weight or preterm-birth, we found that B-Pbs below 10 μg/dL were inversely associated with reading and math scores in 3 rd grade children. For a 5 μg/dL increase in B-Pb, the risk of failing increased by 32% for reading (RR = 1.32, 95%CI = 1.26, 1.39) and math (RR = 1.32, 95%CI = 1.26, 1.39). The effect of lead on reading was non-linear with steeper failure rates at lower B-Pbs. We estimated that 13% of reading failure and 14.8% of math failure can be attributed to exposure to blood lead concentrations of 5 to 9 vs. 0 to 4 μg/dL in Chicago school children.


          Early childhood lead exposure is associated with poorer achievement on standardized reading and math tests in the third grade, even at very low B-Pbs. Preventing lead exposure in early childhood is critical to improving school performance.

          Related collections

          Most cited references 20

          • Record: found
          • Abstract: found
          • Article: not found

          Low-Level Environmental Lead Exposure and Children’s Intellectual Function: An International Pooled Analysis

          Lead is a confirmed neurotoxin, but questions remain about lead-associated intellectual deficits at blood lead levels < 10 μg/dL and whether lower exposures are, for a given change in exposure, associated with greater deficits. The objective of this study was to examine the association of intelligence test scores and blood lead concentration, especially for children who had maximal measured blood lead levels < 10 μg/dL. We examined data collected from 1,333 children who participated in seven international population-based longitudinal cohort studies, followed from birth or infancy until 5–10 years of age. The full-scale IQ score was the primary outcome measure. The geometric mean blood lead concentration of the children peaked at 17.8 μg/dL and declined to 9.4 μg/dL by 5–7 years of age; 244 (18%) children had a maximal blood lead concentration < 10 μg/dL, and 103 (8%) had a maximal blood lead concentration < 7.5 μg/dL. After adjustment for covariates, we found an inverse relationship between blood lead concentration and IQ score. Using a log-linear model, we found a 6.9 IQ point decrement [95% confidence interval (CI), 4.2–9.4] associated with an increase in concurrent blood lead levels from 2.4 to 30 μg/dL. The estimated IQ point decrements associated with an increase in blood lead from 2.4 to 10 μg/dL, 10 to 20 μg/dL, and 20 to 30 μg/dL were 3.9 (95% CI, 2.4–5.3), 1.9 (95% CI, 1.2–2.6), and 1.1 (95% CI, 0.7–1.5), respectively. For a given increase in blood lead, the lead-associated intellectual decrement for children with a maximal blood lead level < 7.5 μg/dL was significantly greater than that observed for those with a maximal blood lead level ≥7.5 μg/dL (p = 0.015). We conclude that environmental lead exposure in children who have maximal blood lead levels < 7.5 μg/dL is associated with intellectual deficits.
            • Record: found
            • Abstract: found
            • Article: not found

            Intellectual impairment in children with blood lead concentrations below 10 microg per deciliter.

            Despite dramatic declines in children's blood lead concentrations and a lowering of the Centers for Disease Control and Prevention's level of concern to 10 microg per deciliter (0.483 micromol per liter), little is known about children's neurobehavioral functioning at lead concentrations below this level. We measured blood lead concentrations in 172 children at 6, 12, 18, 24, 36, 48, and 60 months of age and administered the Stanford-Binet Intelligence Scale at the ages of 3 and 5 years. The relation between IQ and blood lead concentration was estimated with the use of linear and nonlinear mixed models, with adjustment for maternal IQ, quality of the home environment, and other potential confounders. The blood lead concentration was inversely and significantly associated with IQ. In the linear model, each increase of 10 microg per deciliter in the lifetime average blood lead concentration was associated with a 4.6-point decrease in IQ (P=0.004), whereas for the subsample of 101 children whose maximal lead concentrations remained below 10 microg per deciliter, the change in IQ associated with a given change in lead concentration was greater. When estimated in a nonlinear model with the full sample, IQ declined by 7.4 points as lifetime average blood lead concentrations increased from 1 to 10 microg per deciliter. Blood lead concentrations, even those below 10 microg per deciliter, are inversely associated with children's IQ scores at three and five years of age, and associated declines in IQ are greater at these concentrations than at higher concentrations. These findings suggest that more U.S. children may be adversely affected by environmental lead than previously estimated. Copyright 2003 Massachusetts Medical Society
              • Record: found
              • Abstract: found
              • Article: not found

              Meta-analysis of neurobehavioral outcomes in very preterm and/or very low birth weight children.

              Sequelae of academic underachievement, behavioral problems, and poor executive function (EF) have been extensively reported for very preterm ( 0.51). Very preterm and/or VLBW children have moderate-to-severe deficits in academic achievement, attention problems, and internalizing behavioral problems and poor EF, which are adverse outcomes that were strongly correlated to their immaturity at birth. During transition to young adulthood these children continue to lag behind term-born peers.

                Author and article information

                Environ Health
                Environ Health
                Environmental Health
                BioMed Central (London )
                7 April 2015
                7 April 2015
                : 14
                [ ]University of Illinois at Chicago, 2121 W. Taylor Street, Chicago, 60612 IL USA
                [ ]University of Illinois at Chicago, Center for Global Health, College of Medicine, 1940 W. Taylor Street, Chicago, 60612 IL USA
                [ ]Northwestern University, School of Education and Social Policy, 2120 Campus Drive, Evanston, 60208 IL USA
                [ ]Child & Family Research Institute, BC Children’s Hospital and Faculty of Health Sciences, Simon Fraser University, Vancouver, V5Z 3E5 BC Canada
                © Evens et al.; licensee BioMed Central. 2015

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated.

                Custom metadata
                © The Author(s) 2015


                Comment on this article