Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Systematic parameter errors in inspiraling neutron star binaries

Preprint

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      The coalescence of two neutron stars is an important gravitational wave source for LIGO and other detectors. Numerous studies have considered the precision with which binary parameters (masses, spins, Love numbers) can be measured. Here I consider the accuracy with which these parameters can be determined in the presence of systematic errors due to waveform approximations. These approximations include truncation of the post-Newtonian (PN) series and neglect of neutron star (NS) spin, tidal deformation, or orbital eccentricity. All of these effects can yield systematic errors that exceed statistical errors for plausible parameter values. In particular, neglecting spin, eccentricity, or high-order PN terms causes a significant bias in the NS Love number. Tidal effects will not be measurable with PN inspiral waveforms if these systematic errors are not controlled.

      Related collections

      Most cited references 13

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Coalescing binary systems of compact objects to (post)$^{5/2}-Newtonian order. V. Spin Effects

      We examine the effects of spin-orbit and spin-spin coupling on the inspiral of a coalescing binary system of spinning compact objects and on the gravitational radiation emitted therefrom. Using a formalism developed by Blanchet, Damour, and Iyer, we calculate the contributions due to the spins of the bodies to the symmetric trace-free radiative multipole moments which are used to calculate the waveform, energy loss, and angular momentum loss from the inspiralling binary. Using equations of motion which include terms due to spin-orbit and spin-spin coupling, we evolve the orbit of a coalescing binary and use the orbit to calculate the emitted gravitational waveform. We find the spins of the bodies affect the waveform in several ways: 1) The spin terms contribute to the orbital decay of the binary, and thus to the accumulated phase of the gravitational waveform. 2) The spins cause the orbital plane to precess, which changes the orientation of the orbital plane with respect to an observer, thus causing the shape of the waveform to be modulated. 3) The spins contribute directly to the amplitude of the waveform. We discuss the size and importance of spin effects for the case of two coalescing neutron stars, and for the case of a neutron star orbiting a rapidly rotating \(10M_\odot\) black hole.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: found
        Is Open Access

        Constraining neutron star tidal Love numbers with gravitational wave detectors

        Ground-based gravitational wave detectors may be able to constrain the nuclear equation of state using the early, low frequency portion of the signal of detected neutron star - neutron star inspirals. In this early adiabatic regime, the influence of a neutron star's internal structure on the phase of the waveform depends only on a single parameter lambda of the star related to its tidal Love number, namely the ratio of the induced quadrupole moment to the perturbing tidal gravitational field. We analyze the information obtainable from gravitational wave frequencies smaller than a cutoff frequency of 400 Hz, where corrections to the internal-structure signal are less than 10 percent. For an inspiral of two non-spinning 1.4 solar mass neutron stars at a distance of 50 Mpc, LIGO II detectors will be able to constrain lambda to lambda < 2.0 10^{37} g cm^2 s^2 with 90% confidence. Fully relativistic stellar models show that the corresponding constraint on radius R for 1.4 solar mass neutron stars would be R < 13.6 km (15.3 km) for a n=0.5 (n=1.0) polytrope.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors

          The two-body dynamics in general relativity has been solved perturbatively using the post-Newtonian (PN) approximation. The evolution of the orbital phase and the emitted gravitational radiation are now known to a rather high order up to O(v^8), v being the characteristic velocity of the binary. The orbital evolution, however, cannot be specified uniquely due to the inherent freedom in the choice of parameter used in the PN expansion as well as the method pursued in solving the relevant differential equations. The goal of this paper is to determine the (dis)agreement between different PN waveform families in the context of initial and advanced gravitational-wave detectors. The waveforms employed in our analysis are those that are currently used by Initial LIGO/Virgo, that is the time-domain PN models TaylorT1, TaylorT2, TaylorT3, TaylorT4 and TaylorEt, the effective one-body (EOB) model, and the Fourier-domain representation TaylorF2. We examine the overlaps of these models with one another and with the prototype effective one-body model (calibrated to numerical relativity simulations, as currently used by initial LIGO) for a number of different binaries at 2PN, 3PN and 3.5PN orders to quantify their differences and to help us decide whether there exist preferred families that are the most appropriate as search templates. We conclude that as long as the total mass remains less than a certain upper limit M_crit, all template families at 3.5PN order (except TaylorT3 and TaylorEt) are equally good for the purpose of detection. The value of M_crit is found to be ~ 12M_Sun for Initial, Enhanced and Advanced LIGO. From a purely computational point of view we recommend that 3.5PN TaylorF2 be used below Mcrit and EOB calibrated to numerical relativity simulations be used for total binary mass M > Mcrit.
            Bookmark

            Author and article information

            Journal
            30 October 2013
            2014-03-17
            1310.8288 10.1103/PhysRevLett.112.101101

            http://arxiv.org/licenses/nonexclusive-distrib/1.0/

            Custom metadata
            LIGO-P1300191
            Phys. Rev. Lett. 112, 101101 (2014)
            5 pgs, 2 figures. V2: scope enlarged to include effects of neglecting spin and orbit eccentricity on Love number error. Modified Fig. 2d. Other minor changes in response to referees' comments. Matches published version
            gr-qc astro-ph.HE

            Comments

            Comment on this article