Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Unveiling the nature of the "Green Pea" galaxies

Preprint

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      We review recent results on the oxygen and nitrogen chemical abundances in extremely compact, low-mass starburst galaxies at redshifts between 0.1-0.3 recently named to as "Green Pea" galaxies. These galaxies are genuine metal-poor galaxies (\(\sim\) one fifth solar) with N/O ratios unusually high for galaxies of the same metallicity. In combination with their known general properties, i.e., size, stellar mass and star-formation rate, these findings suggest that these objects could be experiencing a short and extreme phase in their evolution. The possible action of both recent and massive inflow of gas, as well as stellar feedback mechanisms are discussed here as main drivers of the starburst activity and their oxygen and nitrogen abundances.

      Related collections

      Most cited references 5

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Mass-Metallicity Relation at z~2

      We use a sample of 87 rest-frame UV-selected star-forming galaxies with mean spectroscopic redshift z=2.26 to study the correlation between metallicity and stellar mass at high redshift. Using stellar masses determined from SED fitting to 0.3-8 micron photometry, we divide the sample into six bins in stellar mass, and construct six composite H-alpha+[NII] spectra from all of the objects in each bin. We estimate the mean oxygen abundance in each bin from the [NII]/H-alpha ratio, and find a monotonic increase in metallicity with increasing stellar mass, from 12+log(O/H) = 2.7e9 Msun to 12+log(O/H) = 8.6 for galaxies with = 1e11 Msun. We use the empirical relation between star formation rate density and gas density to estimate the gas fractions of the galaxies, finding an increase in gas fraction with decreasing stellar mass. These gas fractions combined with the observed metallicities allow the estimation of the effective yield y_eff as a function of stellar mass; in constrast to observations in the local universe which show a decrease in y_eff with decreasing baryonic mass, we find a slight increase. Such a variation of metallicity with gas fraction is best fit by a model with supersolar yield and an outflow rate ~4 times higher than the star formation rate. We conclude that the mass-metallicity relation at high redshift is driven by the increase in metallicity as the gas fraction decreases through star formation, and is likely modulated by metal loss from strong outflows in galaxies of all masses. There is no evidence for preferential loss of metals from low mass galaxies as has been suggested in the local universe. [Abridged]
        Bookmark
        • Record: found
        • Abstract: found
        • Article: found
        Is Open Access

        On The Cosmic Origins Of Carbon And Nitrogen

        We analyze the behavior of N/O and C/O abundance ratios as a function of metallicity as gauged by O/H in large, extant Galactic and extragalactic H II region abundance samples. Numerical chemical evolution models are computed using published stellar yields implied by comparing analytical models to the observations. Our results suggest that carbon and nitrogen originate from separate production sites and are decoupled from one another. Massive stars (M>8M_sun) dominate the production of carbon, while intermediate-mass stars between 4 and 8 solar masses, with a characteristic ejection delay time of 250 Myr after their formation, dominate nitrogen production. Carbon production is positively sensitive to metallicity through mass loss processes in massive stars and has a pseudo-secondary character. Nitrogen production in intermediate mass stars is primary at low metallicity, but clearly secondary (and perhaps tertiary) when 12+log(O/H)>8.3. The observed flat behavior of N/O versus O/H in metal-poor galaxies is explained by invoking low star formation rates which flatten the age-metallicity relation and thereby allow N/O to rise to observed levels at low metallicities. The observed scatter and distribution of data points for N/O challenge the popular idea that intermittent polluting by oxygen from massive stars is occurring following star bursts. The effect of inflow of gas into galactic systems on secondary production of nitrogen from carbon may introduce some scatter into N/O ratios at high metallicities.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Metal Abundances of KISS Galaxies III. Nebular Abundances for Fourteen Galaxies and the Luminosity-Metallicity Relationship for HII Galaxies

          We report results from the third in a series of nebular abundance studies of emission-line galaxies from the KPNO International Spectroscopic Survey (KISS). Galaxies with coarse metallicity estimates of 12 + log(O/H) less than 8.2 dex were selected for observation. Spectra of 14 galaxies, which cover the full optical region from [OII]3727,3729 to beyond [SII]6717,6731, are presented, and abundance ratios of N, O, Ne, S, and Ar are computed. The auroral [OIII]4363 line is detected in all 14 galaxies. Oxygen abundances determined through the direct electron temperature T_e method confirm that the sample is metal-poor with 7.61 <= 12 + log(O/H) <= 8.32. By using these abundances in conjunction with other T_e-based measurements from the literature, we demonstrate that HII galaxies and more quiescent dwarf irregular galaxies follow similar metallicity-luminosity (L-Z) relationships. The primary difference is a zero-point shift between the correlations such that HII galaxies are brighter by an average of 0.8 B magnitudes at a given metallicity. This offset can be used as evidence to argue that low-luminosity HII galaxies typically undergo factor of two luminosity enhancements, and starbursts that elevate the luminosities of their host galaxies by 2 to 3 magnitudes are not as common. We also demonstrate that the inclusion of interacting galaxies can increase the scatter in the L-Z relation and may force the observed correlation towards lower metallicities and/or larger luminosities. This must be taken into account when attempting to infer metal abundance evolution by comparing local L-Z relations with ones based on higher redshift samples since the fraction of interacting galaxies should increase with look-back time.
            Bookmark

            Author and article information

            Journal
            07 May 2011
            1105.1477 10.1007/978-3-642-22018-0_28

            http://arxiv.org/licenses/nonexclusive-distrib/1.0/

            Custom metadata
            To appear in JENAM Symposium "Dwarf Galaxies: Keys to Galaxy Formation and Evolution", P. Papaderos, G. Hensler, S. Recchi (eds.). Lisbon, September 2010, Springer Verlag, in press
            astro-ph.CO

            Comments

            Comment on this article