55
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Input-specific control of reward and aversion in the ventral tegmental area

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ventral tegmental area (VTA) dopamine neurons play important roles in adaptive and pathological brain functions related to reward and motivation. It is unknown, however, if subpopulations of VTA dopamine neurons participate in distinct circuits that encode different motivational signatures and whether inputs to the VTA differentially modulate such circuits. Here we show that because of differences in synaptic connectivity activation of inputs to the VTA from the laterodorsal tegmentum and the lateral habenula elicit reward and aversion in mice, respectively. Laterodorsal tegmentum neurons preferentially synapse on dopamine neurons projecting to nucleus accumbens lateral shell while lateral habenula neurons synapse primarily on dopamine neurons projecting to medial prefrontal cortex as well as on GABAergic neurons in the VTA tail. These results establish that distinct VTA circuits generate reward and aversion and thereby provide a novel framework for understanding the circuit basis of adaptive and pathological motivated behaviors.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning.

          Natural rewards and drugs of abuse can alter dopamine signaling, and ventral tegmental area (VTA) dopaminergic neurons are known to fire action potentials tonically or phasically under different behavioral conditions. However, without technology to control specific neurons with appropriate temporal precision in freely behaving mammals, the causal role of these action potential patterns in driving behavioral changes has been unclear. We used optogenetic tools to selectively stimulate VTA dopaminergic neuron action potential firing in freely behaving mammals. We found that phasic activation of these neurons was sufficient to drive behavioral conditioning and elicited dopamine transients with magnitudes not achieved by longer, lower-frequency spiking. These results demonstrate that phasic dopaminergic activity is sufficient to mediate mammalian behavioral conditioning.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system.

            The mesocorticolimbic dopamine system is essential for cognitive and emotive brain functions and is thus an important target in major brain diseases like schizophrenia, drug addiction, and attention deficit hyperactivity disorder. However, the cellular basis for the diversity in behavioral functions and associated dopamine-release pattern within the mesocorticolimbic system has remained unclear. Here, we report the identification of a type of dopaminergic neuron within the mesocorticolimbic dopamine system with unconventional fast-firing properties and small DAT/TH mRNA expression ratios that selectively projects to prefrontal cortex and nucleus accumbens core and medial shell as well as to basolateral amygdala. In contrast, well-described conventional slow-firing dopamine midbrain neurons only project to the lateral shell of the nucleus accumbens and the dorsolateral striatum. Among this dual dopamine midbrain system defined in this study by converging anatomical, electrophysiological, and molecular properties, mesoprefrontal dopaminergic neurons are unique, as only they do not possess functional somatodendritic Girk2-coupled dopamine D2 autoreceptors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Projection-specific modulation of dopamine neuron synapses by aversive and rewarding stimuli.

              Midbrain dopamine (DA) neurons are not homogeneous but differ in their molecular properties and responses to external stimuli. We examined whether the modulation of excitatory synapses on DA neurons by rewarding or aversive stimuli depends on the brain area to which these DA neurons project. We identified DA neuron subpopulations in slices after injection of "Retrobeads" into single target areas of adult mice and found differences in basal synaptic properties. Administration of cocaine selectively modified excitatory synapses on DA cells projecting to nucleus accumbens (NAc) medial shell while an aversive stimulus selectively modified synapses on DA cells projecting to medial prefrontal cortex. In contrast, synapses on DA neurons projecting to NAc lateral shell were modified by both rewarding and aversive stimuli, which presumably reflects saliency. These results suggest that the mesocorticolimbic DA system may be comprised of three anatomically distinct circuits, each modified by distinct aspects of motivationally relevant stimuli. Copyright © 2011 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                0410462
                6011
                Nature
                Nature
                Nature
                0028-0836
                1476-4687
                23 August 2012
                14 October 2012
                8 November 2012
                08 May 2013
                : 491
                : 7423
                : 212-217
                Affiliations
                [1 ]Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 265 Campus Drive, Stanford CA 94305, USA
                [2 ]Departments of Bioengineering and Psychiatry, Stanford University, Stanford CA 94305, USA
                [3 ]Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
                Author notes
                [*]

                These authors contributed equally

                Correspondence to: R. Malenka Department of Psychiatry and Behavioral Sciences, 265 Campus Drive, Room G1021 Stanford University School of Medicine Stanford, CA 94305 Tel. 650-724-2730 Fax. 650-724-2753 malenka@ 123456stanford.edu
                Article
                NIHMS402198
                10.1038/nature11527
                3493743
                23064228
                2530b15f-dbbb-42b5-9398-8d3584ddec14

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Funding
                Funded by: National Institute of Mental Health : NIMH
                Award ID: P50 MH086403 || MH
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article