6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Downstream Exposure to Growth Factors Causes Elevated Velocity and Dilation in Arteriolar Networks

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Our goal was to characterize changes in flow and diameter with vascular endothelial cell growth factor A (VEGF-A) and fibroblast growth factor 2 (FGF2). Observations were made in arteriolar networks of the cheek pouch tissue in anesthetized hamsters (pentobarbital 70 mg/kg, i.p., n = 45). Local and remote dilation responses to micropipette-applied VEGF or FGF2 yielded similar EC<sub>50</sub> values. The role of gap junctions in the remote response was tested by applying sucrose, halothane or 18αGA to the feed arteriole midway between the remote stimulation and upstream observation sites; all remote dilation to FGF2 was prevented, while only the early dilation to VEGF was blocked. The remote dilation to VEGF displayed a second rheologic mechanism. The second mechanism involved an abrupt increase in upstream velocity and shear rate, followed by nitro-arginine sensitive dilation. To test whether the abrupt increase in shear could be caused by other agents known to cause edema, remote responses to histamine and thrombin were tested. Each caused an abrupt increase in velocity followed by nitro-arginine-sensitive dilation. This study shows that VEGF or agents that increase permeability can initiate an upstream velocity increase with dilation that recruits flow to the network; this is in addition to simultaneous gap junction-mediated dilation.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability.

          Src kinase activity was found to protect endothelial cells from apoptosis during vascular endothelial growth factor (VEGF)-, but not basic fibroblast growth factor (bFGF)-, mediated angiogenesis in chick embryos and mice. In fact, retroviral targeting of kinase-deleted Src to tumor-associated blood vessels suppressed angiogenesis and the growth of a VEGF-producing tumor. Although mice lacking individual Src family kinases (SFKs) showed normal angiogenesis, mice deficient in pp60c-src or pp62c-yes showed no VEGF-induced vascular permeability (VP), yet fyn-/- mice displayed normal VP. In contrast, inflammation-mediated VP appeared normal in Src-deficient mice. Therefore, VEGF-, but not bFGF-, mediated angiogenesis requires SFK activity in general, whereas the VP activity of VEGF specifically depends on the SFKs, Src, or Yes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Where is VEGF in the body? A meta-analysis of VEGF distribution in cancer

            Vascular endothelial growth factor (VEGF) is a major target for the inhibition of tumour vascularisation and the treatment of human cancer. Many tumours produce large quantities of VEGF, and as a result, diagnosis and prognosis of cancer may be predicted by measuring changes in VEGF concentrations in blood. In blood, the VEGF may be located in the plasma, or in the blood-borne cells and formed elements, in particular, platelets and leukocytes. In this study, we collate the measurements of VEGF in platelets, leukocytes, plasma and serum for breast, prostate, colorectal and other cancers. In addition, we analysed the concentration of VEGF in tumour tissue itself, as well as for other tissues in the human body. Although the concentration of VEGF in tumours is high, the size of tumours is small compared to other tissues, in particular, skeletal muscle. Thus, the total quantity of VEGF in tumours and in blood is small compared to the quantity in muscles. This large reservoir of VEGF may have important implications for the treatment of cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              VEGF receptor signal transduction.

              The family of vascular endothelial growth factors (VEGFs) currently includes VEGF-A, -B, -C, -D, -E, and placenta growth factor (PlGF). Several of these factors, notably VEGF-A, exist as different isoforms, which appear to have unique biological functions. The VEGF family proteins bind in a distinct pattern to three structurally related receptor tyrosine kinases, denoted VEGF receptor-1, -2, and -3. Neuropilins, heparan-sulfated proteoglycans, cadherins, and integrin alphavbeta3 serve as coreceptors for certain but not all VEGF proteins. Moreover, the angiogenic response to VEGF varies between different organs and is dependent on the genetic background of the animal. Inactivation of the genes for VEGF-A and VEGF receptor-2 leads to embryonal death due to the lack of endothelial cells. Inactivation of the gene encoding VEGF receptor-1 leads to an increased number of endothelial cells, which obstruct the vessel lumen. Inactivation of VEGF receptor-3 leads to abnormally organized vessels and cardiac failure. Although VEGF receptor-3 normally is expressed only on lymphatic endothelial cells, it is up-regulated on vascular as well as nonvascular tumors and appears to be involved in the regulation of angiogenesis. A large body of data, such as those on gene inactivation, indicate that VEGF receptor-1 exerts a negative regulatory effect on VEGF receptor-2, at least during embryogenesis. Recent data imply a positive regulatory role for VEGF receptor-1 in pathological angiogenesis. The VEGF proteins are in general poor mitogens, but binding of VEGF-A to VEGF receptor-2 leads to survival, migration, and differentiation of endothelial cells and mediation of vascular permeability. This review outlines the current knowledge about the signal transduction properties of VEGF receptors, with focus on VEGF receptor-2.
                Bookmark

                Author and article information

                Journal
                JVR
                J Vasc Res
                10.1159/issn.1018-1172
                Journal of Vascular Research
                S. Karger AG
                1018-1172
                1423-0135
                2011
                December 2010
                06 July 2010
                : 48
                : 1
                : 11-22
                Affiliations
                Department of Biomedical Engineering, Stony Brook University, Stony Brook, N.Y., USA
                Article
                317396 PMC3214951 J Vasc Res 2011;48:11–22
                10.1159/000317396
                PMC3214951
                20606467
                25389784-7c72-4b45-aa8e-c8ced9980e5a
                © 2010 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 19 August 2009
                : 08 January 2010
                Page count
                Figures: 8, Tables: 2, References: 65, Pages: 12
                Categories
                Research Paper

                General medicine,Neurology,Cardiovascular Medicine,Internal medicine,Nephrology
                Extracellular matrix,Basic fibroblast growth factor,Vascular endothelial cell growth factor A,Permeability

                Comments

                Comment on this article