58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Rapid induction of inflammatory lipid mediators by the inflammasome in vivo

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Detection of microbial products by host inflammasomes is critical for innate immune surveillance. Inflammasomes activate the CASPASE-1 (CASP1) protease, which processes the cytokines interleukin(IL)-1β and -18, and initiates a lytic host cell death called pyroptosis 1 . To identify novel CASP1 functions in vivo, we devised a strategy for cytosolic delivery of bacterial flagellin, a specific ligand for the NAIP5 (NLR family, apoptosis inhibitory protein 5)/NLRC4 (NLR family, CARD domain containing 4) inflammasome 24 . Here we show that systemic inflammasome activation by flagellin leads to loss of vascular fluid into the intestine and peritoneal cavity, resulting in rapid (< 30 minutes) death in mice. This unexpected response depends on the inflammasome components NAIP5, NLRC4, and CASP1, but is independent of IL-1β/-18 production. Instead, inflammasome activation results, within minutes, in an ‘eicosanoid storm’ – a pathological release of signaling lipids that rapidly initiate inflammation and vascular fluid loss. Mice deficient in cyclooxygenase-1 (COX-1), a critical enzyme in prostaglandin biosynthesis, are resistant to these rapid pathological effects of systemic inflammasome activation by either flagellin or anthrax lethal toxin. Inflammasome-dependent biosynthesis of eicosanoids is mediated by activation of cPLA2 (cytosolic phospholipase A2) in resident peritoneal macrophages, which are specifically primed for production of eicosanoids by high expression of eicosanoid biosynthetic enzymes. Thus, our results identify eicosanoids as a novel cell type-specific signaling output of the inflammasome with dramatic physiological consequences in vivo.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus.

          Inflammasomes are large cytoplasmic complexes that sense microbial infections/danger molecules and induce caspase-1 activation-dependent cytokine production and macrophage inflammatory death. The inflammasome assembled by the NOD-like receptor (NLR) protein NLRC4 responds to bacterial flagellin and a conserved type III secretion system (TTSS) rod component. How the NLRC4 inflammasome detects the two bacterial products and the molecular mechanism of NLRC4 inflammasome activation are not understood. Here we show that NAIP5, a BIR-domain NLR protein required for Legionella pneumophila replication in mouse macrophages, is a universal component of the flagellin-NLRC4 pathway. NAIP5 directly and specifically interacted with flagellin, which determined the inflammasome-stimulation activities of different bacterial flagellins. NAIP5 engagement by flagellin promoted a physical NAIP5-NLRC4 association, rendering full reconstitution of a flagellin-responsive NLRC4 inflammasome in non-macrophage cells. The related NAIP2 functioned analogously to NAIP5, serving as a specific inflammasome receptor for TTSS rod proteins such as Salmonella PrgJ and Burkholderia BsaK. Genetic analysis of Chromobacterium violaceum infection revealed that the TTSS needle protein CprI can stimulate NLRC4 inflammasome activation in human macrophages. Similarly, CprI is specifically recognized by human NAIP, the sole NAIP family member in human. The finding that NAIP proteins are inflammasome receptors for bacterial flagellin and TTSS apparatus components further predicts that the remaining NAIP family members may recognize other unidentified microbial products to activate NLRC4 inflammasome-mediated innate immunity. © 2011 Macmillan Publishers Limited. All rights reserved
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Resolution of inflammation: state of the art, definitions and terms.

            A recent focus meeting on Controlling Acute Inflammation was held in London, April 27-28, 2006, organized by D.W. Gilroy and S.D. Brain for the British Pharmacology Society. We concluded at the meeting that a consensus report was needed that addresses the rapid progress in this emerging field and details how the specific study of resolution of acute inflammation provides leads for novel anti-inflammatory therapeutics, as well as defines the terms and key components of interest in the resolution process within tissues as appreciated today. The inflammatory response protects the body against infection and injury but can itself become dysregulated with deleterious consequences to the host. It is now evident that endogenous biochemical pathways activated during defense reactions can counter-regulate inflammation and promote resolution. Hence, resolution is an active rather than a passive process, as once believed, which now promises novel approaches for the treatment of inflammation-associated diseases based on endogenous agonists of resolution.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Active caspase-1 is a regulator of unconventional protein secretion.

              Mammalian cells export most proteins by the endoplasmic reticulum/Golgi-dependent pathway. However, some proteins are secreted via unconventional, poorly understood mechanisms. The latter include the proinflammatory cytokines interleukin(IL)-1beta, IL-18, and IL-33, which require activation by caspase-1 for biological activity. Caspase-1 itself is activated by innate immune complexes, the inflammasomes. Here we show that secretion of the leaderless proteins proIL-1alpha, caspase-1, and fibroblast growth factor (FGF)-2 depends on caspase-1 activity. Although proIL-1alpha and FGF-2 are not substrates of the protease, we demonstrated their physical interaction. Secretome analysis using iTRAQ proteomics revealed caspase-1-mediated secretion of other leaderless proteins with known or unknown extracellular functions. Strikingly, many of these proteins are involved in inflammation, cytoprotection, or tissue repair. These results provide evidence for an important role of caspase-1 in unconventional protein secretion. By this mechanism, stress-induced activation of caspase-1 directly links inflammation to cytoprotection, cell survival, and regenerative processes.
                Bookmark

                Author and article information

                Journal
                0410462
                6011
                Nature
                Nature
                Nature
                0028-0836
                1476-4687
                5 July 2012
                19 August 2012
                4 October 2012
                04 April 2013
                : 490
                : 7418
                : 107-111
                Affiliations
                [1 ]Department of Molecular and Cell Biology, Division of Immunology & Pathogenesis, University of California at Berkeley, Berkeley, California 94720, USA
                [2 ]Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, USA
                [3 ]Vision Science Program, School of Optometry, University of California at Berkeley, Berkeley, California 94720, USA
                [4 ]Laboratory of Parasitic Diseases, Microbial Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
                [5 ]Department of Molecular Cell Biology, Faculty of Medicine, Vrije Universiteit, Amsterdam, 1081 BT, The Netherlands
                [6 ]Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
                Author notes
                [* ]Correspondence: Russell E. Vance, 415 Life Science Addition, University of California, Berkeley, CA 94720. Tel: (510) 643-2795. rvance@ 123456berkeley.edu , or Karsten Gronert, 594 Minor Hall, University of California, Berkeley, CA 94720. Tel: (510) 642-1076. kgronert@ 123456berkeley.edu
                Article
                NIHMS389413
                10.1038/nature11351
                3465483
                22902502
                253c52ea-3400-4ed4-97a9-47a33614ec3d

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Funding
                Funded by: National Eye Institute : NEI
                Award ID: R01 EY022208 || EY
                Funded by: National Eye Institute : NEI
                Award ID: R01 EY016136 || EY
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article