2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Metaheuristic Autoencoder Deep Learning Model for Intrusion Detector System

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A multichannel autoencoder deep learning approach is developed to address the present intrusion detection systems’ detection accuracy and false alarm rate. First, two separate autoencoders are trained with average traffic and assault traffic. The original samples and the two additional feature vectors comprise a multichannel feature vector. Next, a one-dimensional convolution neural network (CNN) learns probable relationships across channels to better discriminate between ordinary and attack traffic. Unaided multichannel characteristic learning and supervised cross-channel characteristic dependency are used to develop an effective intrusion detection model. The scope of this research is that the method described in this study may significantly minimize false positives while also improving the detection accuracy of unknown attacks, which is the focus of this paper. This research was done in order to improve intrusion detection prediction performance. The autoencoder can successfully reduce the number of features while also allowing for easy integration with different neural networks; it can reduce the time it takes to train a model while also improving its detection accuracy. An evolutionary algorithm is utilized to discover the ideal topology set of the CNN model to maximize the hyperparameters and improve the network’s capacity to recognize interchannel dependencies. This paper is based on the multichannel autoencoder’s effectiveness; the fourth experiment is a comparative analysis, which proves the benefits of the approach in this article by correlating it to the findings of various different intrusion detection methods. This technique outperforms previous intrusion detection algorithms in several datasets and has superior forecast accuracy.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Principal component analysis: a review and recent developments.

          Large datasets are increasingly common and are often difficult to interpret. Principal component analysis (PCA) is a technique for reducing the dimensionality of such datasets, increasing interpretability but at the same time minimizing information loss. It does so by creating new uncorrelated variables that successively maximize variance. Finding such new variables, the principal components, reduces to solving an eigenvalue/eigenvector problem, and the new variables are defined by the dataset at hand, not a priori, hence making PCA an adaptive data analysis technique. It is adaptive in another sense too, since variants of the technique have been developed that are tailored to various different data types and structures. This article will begin by introducing the basic ideas of PCA, discussing what it can and cannot do. It will then describe some variants of PCA and their application.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            CPIDM: A Clustering-Based Profound Iterating Deep Learning Model for HSI Segmentation

            The existing work on unsupervised segmentation frequently does not present any statistical extent to estimating and equating procedures, gratifying a qualitative calculation. Furthermore, regardless of the datum that enormous research is dedicated to the advancement of a novel segmentation approach and upgrading the deep learning techniques, there is an absence of research comprehending the assessment of eminent conventional segmentation methodologies for HSI. In this paper, to moderately fill this gap, we propose a direct method that diminishes the issues to some extent with the deep learning methods in the arena of a HSI space and evaluate the proposed segmentation techniques based on the method of the clustering-based profound iterating deep learning model for HSI segmentation termed as CPIDM. The proposed model is an unsupervised HSI clustering technique centered on the density of pixels in the spectral interplanetary space and the distance concerning the pixels. Furthermore, CPIDM is a fully convolutional neural network. In general, fully convolutional nets remain spatially invariant preventing them from modeling position-reliant outlines. The proposed network maneuvers this by encompassing an innovative position inclined convolutional stratum. The anticipated unique edifice of deep unsupervised segmentation deciphers the delinquency of oversegmentation and nonlinearity of data due to noise and outliers. The spectrum efficacy is erudite and incidental from united feedback via deep hierarchy with pooling and convolutional strata; as a consequence, it formulates an affiliation among class dissemination and spectra along with three-dimensional features. Moreover, the anticipated deep learning model has revealed that it is conceivable to expressively accelerate the segmentation process without substantive quality loss due to the existence of noise and outliers. The proposed CPIDM approach outperforms many state-of-the-art segmentation approaches that include watershed transform and neuro-fuzzy approach as validated by the experimental consequences.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              An Enhanced Secure Deep Learning Algorithm for Fraud Detection in Wireless Communication

              In today’s era of technology, especially in the Internet commerce and banking, the transactions done by the Mastercards have been increasing rapidly. The card becomes the highly useable equipment for Internet shopping. Such demanding and inflation rate causes a considerable damage and enhancement in fraud cases also. It is very much necessary to stop the fraud transactions because it impacts on financial conditions over time the anomaly detection is having some important application to detect the fraud detection. A novel framework which integrates Spark with a deep learning approach is proposed in this work. This work also implements different machine learning techniques for detection of fraudulent like random forest, SVM, logistic regression, decision tree, and KNN. Comparative analysis is done by using various parameters. More than 96% accuracy was obtained for both training and testing datasets. The existing system like Cardwatch, web service-based fraud detection, needs labelled data for both genuine and fraudulent transactions. New frauds cannot be found in these existing techniques. The dataset which is used contains transaction made by credit cards in September 2013 by cardholders of Europe. The dataset contains the transactions occurred in 2 days, in which there are 492 fraud transactions out of 284,807 which is 0.172% of all transaction.
                Bookmark

                Author and article information

                Contributors
                Journal
                Mathematical Problems in Engineering
                Mathematical Problems in Engineering
                Hindawi Limited
                1563-5147
                1024-123X
                March 4 2022
                March 4 2022
                : 2022
                : 1-11
                Affiliations
                [1 ]Department of Electronics and Communication Engineering, Shri Ramswaroop Memorial University, Dewa Road, Barabanki, Uttar Pradesh, India
                [2 ]Indian Institute of Management, Kozhikode, India
                [3 ]Department of Computer Science and Engineering, ITM SLS Baroda University, Vadodara, Gujarat 391510, India
                [4 ]Department of CSE, School of Engineering and Technology, Mody University, Lakshmangarh, Rajasthan, India
                [5 ]Department of Electrical Engineering, School of Engineering and Technology, Central University of Haryana, Mahendragarh, India
                [6 ]Department of Information Technology, Dambi Dollo University, Dembi Dolo, Welega, Ethiopia
                Article
                10.1155/2022/3859155
                254cc174-be87-4adf-8b25-9b88a99912e7
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article