4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Viral transmission in honey bees and native bees, supported by a global black queen cell virus phylogeny

      1 , 2 , 2 , 2 , 1 , 1
      Environmental Microbiology
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Correlating viral phenotypes with phylogeny: accounting for phylogenetic uncertainty.

          Many recent studies have sought to quantify the degree to which viral phenotypic characters (such as epidemiological risk group, geographic location, cell tropism, drug resistance state, etc.) are correlated with shared ancestry, as represented by a viral phylogenetic tree. Here, we present a new Bayesian Markov-Chain Monte Carlo approach to the investigation of such phylogeny-trait correlations. This method accounts for uncertainty arising from phylogenetic error and provides a statistical significance test of the null hypothesis that traits are associated randomly with phylogeny tips. We perform extensive simulations to explore and compare the behaviour of three statistics of phylogeny-trait correlation. Finally, we re-analyse two existing published data sets as case studies. Our framework aims to provide an improvement over existing methods for this problem.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Honey bee viruses.

            Viruses are significant threats to the health and well-being of the honey bee, Apis mellifera. To alleviate the threats posed by these invasive organisms, a better understanding of bee viral infections will be of crucial importance in developing effective and environmentally benign disease control strategies. Although knowledge of honey bee viruses has been accumulated considerably in the past three decades, a comprehensive review to compile the various aspects of bee viruses at the molecular level has not been reported. This chapter summarizes recent progress in the understanding of the morphology, genome organization, transmission, epidemiology, and pathogenesis of honey bee viruses as well as their interactions with their honey bee hosts. The future prospects of research of honey bee viruses are also discussed in detail. The chapter has been designed to provide researchers in the field with updated information about honey bee viruses and to serve as a starting point for future research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              RNA Viruses in Hymenopteran Pollinators: Evidence of Inter-Taxa Virus Transmission via Pollen and Potential Impact on Non-Apis Hymenopteran Species

              Although overall pollinator populations have declined over the last couple of decades, the honey bee (Apis mellifera) malady, colony collapse disorder (CCD), has caused major concern in the agricultural community. Among honey bee pathogens, RNA viruses are emerging as a serious threat and are suspected as major contributors to CCD. Recent detection of these viral species in bumble bees suggests a possible wider environmental spread of these viruses with potential broader impact. It is therefore vital to study the ecology and epidemiology of these viruses in the hymenopteran pollinator community as a whole. We studied the viral distribution in honey bees, in their pollen loads, and in other non-Apis hymenopteran pollinators collected from flowering plants in Pennsylvania, New York, and Illinois in the United States. Viruses in the samples were detected using reverse transcriptase-PCR and confirmed by sequencing. For the first time, we report the molecular detection of picorna-like RNA viruses (deformed wing virus, sacbrood virus and black queen cell virus) in pollen pellets collected directly from forager bees. Pollen pellets from several uninfected forager bees were detected with virus, indicating that pollen itself may harbor viruses. The viruses in the pollen and honey stored in the hive were demonstrated to be infective, with the queen becoming infected and laying infected eggs after these virus-contaminated foods were given to virus-free colonies. These viruses were detected in eleven other non-Apis hymenopteran species, ranging from many solitary bees to bumble bees and wasps. This finding further expands the viral host range and implies a possible deeper impact on the health of our ecosystem. Phylogenetic analyses support that these viruses are disseminating freely among the pollinators via the flower pollen itself. Notably, in cases where honey bee apiaries affected by CCD harbored honey bees with Israeli Acute Paralysis virus (IAPV), nearby non-Apis hymenopteran pollinators also had IAPV, while those near apiaries without IAPV did not. In containment greenhouse experiments, IAPV moved from infected honey bees to bumble bees and from infected bumble bees to honey bees within a week, demonstrating that the viruses could be transmitted from one species to another. This study adds to our present understanding of virus epidemiology and may help explain bee disease patterns and pollinator population decline in general.
                Bookmark

                Author and article information

                Journal
                Environmental Microbiology
                Environ Microbiol
                Wiley
                1462-2912
                1462-2920
                February 22 2019
                March 2019
                January 17 2019
                March 2019
                : 21
                : 3
                : 972-983
                Affiliations
                [1 ]Department of EntomologyCornell University Ithaca NY 14853 USA
                [2 ]Department of MicrobiologyUniversity of Massachusetts Amherst MA 01003 USA
                Article
                10.1111/1462-2920.14501
                30537211
                254ffd33-8703-49c1-8e84-730a4a2f7b11
                © 2019

                http://onlinelibrary.wiley.com/termsAndConditions#am

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article