14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dexamethasone-dependent modulation of cyclic GMP synthesis in podocytes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Podocytes may be direct target for glucocorticoid therapy in glomerular proteinuric disease. Permeability of podocytes largely depends on their capacity to migrate which involves the contractile apparatus in their foot processes. In this study, we examined the effect of synthetic glucocorticoid dexamethasone (DEX) on the ability of podocytes to produce cyclic guanosine monophosphate (cGMP) in the presence of vasoactive factors, atrial natriuretic peptide (ANP), nitric oxide (NO), and angiotensin II (Ang II). We investigated also the effects of cGMP and DEX on podocyte motility. Primary rat podocytes and immortalized mouse podocytes were pretreated with 1 µM DEX for 4 or 24 h. Glomerular hypertension was mimicked by subjecting the cells to mechanical stress. Total and subcellular cGMP levels were determined in podocytes incubated with 0.1 µM ANP, 1 µM S-nitroso- N-acetyl penicillamine (SNAP), and 1 µM Ang II. Cell motility was estimated by a wound-healing assay. The ANP-dependent production of cGMP increased after 4 h exposition to DEX, but was attenuated after 24 h. Adversely, a 24-h pretreatment with DEX augmented the NO-dependent cGMP synthesis. Ang II suppressed the ANP-dependent cGMP production and the effect was enhanced by DEX in mechanical stress conditions. Mechanical stress reduced total cGMP production in the presence of all stimulators, whereas extracellular to total cGMP ratio increased. 8-Br cGMP enhanced podocyte migration which was accompanied by F-actin disassembly. In the presence of DEX these effects were prevented. We conclude that DEX modulates the production of cGMP in podocytes stimulated with vasoactive factors such as Ang II, ANP, and NO, and the effect is time-dependent. cGMP increases podocyte motility, which is prevented by DEX. This mechanism may account for the antiproteinuric effect of glucocorticoids.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Antagonistic regulation of actin dynamics and cell motility by TRPC5 and TRPC6 channels.

          The Rho family of small guanosine triphosphatases (Rho GTPases: RhoA, Cdc42, and Rac1) regulates many aspects of cell behavior, including actin dynamics and cell migration. The generation of calcium ion (Ca(2+)) microdomains is critical in promoting cell migration because they control the localized activity of Rho GTPases. We identified receptor-activated TRPC5 and TRPC6 (transient receptor potential canonical type 5 and 6) channels as antagonistic regulators of actin remodeling and cell motility in fibroblasts and kidney podocytes. We show that TRPC5 is in a molecular complex with Rac1, whereas TRPC6 is in a molecular complex with RhoA. TRPC5-mediated Ca(2+) influx induces Rac1 activation, thereby promoting cell migration, whereas TRPC6-mediated Ca(2+) influx increases RhoA activity, thereby inhibiting cell migration. Our data unveil antagonistic Ca(2+) influx pathways as a conserved signaling mechanism for the integrated regulation of cell migration.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Crosstalk in inflammation: the interplay of glucocorticoid receptor-based mechanisms and kinases and phosphatases.

            Glucocorticoids (GCs) are steroidal ligands for the GC receptor (GR), which can function as a ligand-activated transcription factor. These steroidal ligands and derivatives thereof are the first line of treatment in a vast array of inflammatory diseases. However, due to the general surge of side effects associated with long-term use of GCs and the potential problem of GC resistance in some patients, the scientific world continues to search for a better understanding of the GC-mediated antiinflammatory mechanisms. The reversible phosphomodification of various mediators in the inflammatory process plays a key role in modulating and fine-tuning the sensitivity, longevity, and intensity of the inflammatory response. As such, the antiinflammatory GCs can modulate the activity and/or expression of various kinases and phosphatases, thus affecting the signaling efficacy toward the propagation of proinflammatory gene expression and proinflammatory gene mRNA stability. Conversely, phosphorylation of GR can affect GR ligand- and DNA-binding affinity, mobility, and cofactor recruitment, culminating in altered transactivation and transrepression capabilities of GR, and consequently leading to a modified antiinflammatory potential. Recently, new roles for kinases and phosphatases have been described in GR-based antiinflammatory mechanisms. Moreover, kinase inhibitors have become increasingly important as antiinflammatory tools, not only for research but also for therapeutic purposes. In light of these developments, we aim to illuminate the integrated interplay between GR signaling and its correlating kinases and phosphatases in the context of the clinically important combat of inflammation, giving attention to implications on GC-mediated side effects and therapy resistance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Direct effects of dexamethasone on human podocytes.

              Glucocorticoids are widely used in the treatment of human glomerular diseases, but their mode of action is poorly understood particularly in steroid-sensitive nephrotic syndrome, which is most common in childhood and is characterized by a lack of inflammation in the kidney. The podocyte is a key cell in the glomerulus in health and disease: until recently, human podocytes have been difficult to study in vitro. We have developed a conditionally immortalized human podocyte cell line transfected with a temperature-sensitive simian virus 40 transgene: when the transgene is inactivated in vitro, these cells adopt the phenotype of differentiated podocytes. We have used these cells to evaluate, using immunocytochemistry, reverse transcriptase-polymerase chain reaction, and Western blotting, direct effects of the glucocorticoid dexamethasone at concentrations designed to mimic in vivo therapeutic corticosteroid levels. Dexamethasone upregulated expression of nephrin and tubulin-alpha, and downregulated vascular endothelial growth factor. Effects on cell cycle were complex with downregulation of cyclin kinase inhibitor p21 and augmentation of podocyte survival, without any effect on apoptosis. We report cytokine production by human podocytes, especially interleukin (IL)-6 and -8; IL-6 expression was suppressed by dexamethasone. These potent direct effects on podocytes illustrate a novel mode of action of glucocorticoids and suggest potential new therapeutic strategies for glomerular disease.
                Bookmark

                Author and article information

                Contributors
                (+48 58) 349 21 86 , blew@gumed.edu.pl
                aniaw@gumed.edu.pl
                anmar@gumed.edu.pl
                manata@wp.pl
                ella@gumed.edu.pl
                agnieszka.ela@gumed.edu.pl
                jawit@gumed.edu.pl
                angielsk@gumed.edu.pl
                Journal
                Mol Cell Biochem
                Mol. Cell. Biochem
                Molecular and Cellular Biochemistry
                Springer US (New York )
                0300-8177
                1573-4919
                14 August 2015
                14 August 2015
                2015
                : 409
                : 1-2
                : 243-253
                Affiliations
                [ ]Department of Pharmaceutical Pathophysiology, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
                [ ]Department of Immunopathology, Medical University of Gdansk, Gdansk, Poland
                [ ]Department of Pathology and Experimental Rheumatology, Medical University of Gdansk, Gdansk, Poland
                [ ]Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
                [ ]Laboratory of Cellular and Molecular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw/Gdansk, Poland
                Article
                2528
                10.1007/s11010-015-2528-6
                4589550
                26272337
                255d4bb2-ceab-4752-b6b2-5c21ddd720c1
                © The Author(s) 2015

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 4 January 2015
                : 6 August 2015
                Categories
                Article
                Custom metadata
                © Springer Science+Business Media New York 2015

                Biochemistry
                podocytes,dexamethasone,cgmp,angiotensin ii,mechanical stress,motility
                Biochemistry
                podocytes, dexamethasone, cgmp, angiotensin ii, mechanical stress, motility

                Comments

                Comment on this article