32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparative immunological evaluation of recombinant Salmonella Typhimurium strains expressing model antigens as live oral vaccines

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Despite the development of various systems to generate live recombinant Salmonella Typhimurium vaccine strains, little work has been performed to systematically evaluate and compare their relative immunogenicity. Such information would provide invaluable guidance for the future rational design of live recombinant Salmonella oral vaccines.

          Result

          To compare vaccine strains encoded with different antigen delivery and expression strategies, a series of recombinant Salmonella Typhimurium strains were constructed that expressed either the enhanced green fluorescent protein (EGFP) or a fragment of the hemagglutinin (HA) protein from the H5N1 influenza virus, as model antigens. The antigens were expressed from the chromosome, from high or low-copy plasmids, or encoded on a eukaryotic expression plasmid. Antigens were targeted for expression in either the cytoplasm or the outer membrane. Combinations of strategies were employed to evaluate the efficacy of combined delivery/expression approaches. After investigating in vitro and in vivo antigen expression, growth and infection abilities; the immunogenicity of the constructed recombinant Salmonella strains was evaluated in mice. Using the soluble model antigen EGFP, our results indicated that vaccine strains with high and stable antigen expression exhibited high B cell responses, whilst eukaryotic expression or colonization with good construct stability was critical for T cell responses. For the insoluble model antigen HA, an outer membrane expression strategy induced better B cell and T cell responses than a cytoplasmic strategy. Most notably, the combination of two different expression strategies did not increase the immune response elicited.

          Conclusion

          Through systematically evaluating and comparing the immunogenicity of the constructed recombinant Salmonella strains in mice, we identified their respective advantages and deleterious or synergistic effects. Different construction strategies were optimally-required for soluble versus insoluble forms of the protein antigens. If an antigen, such as EGFP, is soluble and expressed at high levels, a low-copy plasmid-cytoplasmic expression strategy is recommended; since it provokes the highest B cell responses and also induces good T cell responses. If a T cell response is preferred, a eukaryotic expression plasmid or a chromosome-based, cytoplasmic-expression strategy is more effective. For insoluble antigens such as HA, an outer membrane expression strategy is recommended.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: not found
          • Article: not found

          Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium.

            Here we report a genetically modified bacteria strain, Salmonella typhimurium A1, selected for anticancer activity in vivo. The strain grows in tumor xenografts. In sharp contrast, normal tissue is cleared of these bacteria even in immunodeficient athymic mice. S. typhimurium A1 is auxotrophic (Leu/Arg-dependent) but apparently receives sufficient support from the neoplastic tissue to grow locally. Whether additional genetic lesions are present is not known. In in vitro infection, the GFP-expressing bacteria grew in the cytoplasm of PC-3 human prostate cancer cells and caused nuclear destruction. These effects were visualized in cells labeled with GFP in the nucleus and red fluorescent protein in the cytoplasm. In vivo, the bacteria caused tumor inhibition and regression of xenografts visualized by whole-body imaging. The bacteria, introduced i.v. or intratumorally, invaded and replicated intracellularly in PC-3 prostate cancer cells labeled with red fluorescent protein grafted into nude mice. By day 15, S. typhimurium A1 was undetectable in the liver, lung, spleen, and kidney, but it continued to proliferate in the PC-3 tumor, which stopped growing. When the bacteria were injected intratumorally, the tumor completely regressed by day 20. There were no obvious adverse effects on the host when the bacteria were injected by either route. The S. typhimurium A1 strain grew throughout the tumor, including viable malignant tissue. This result is in marked contrast to bacteria previously tried for cancer therapy that were confined to necrotic areas of the tumor, which may account, in part, for the strain's unique antitumor efficacy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Salmonella pathogenicity island 2.

              M Hensel (2000)
              Systemic infections by Salmonella enterica, such as typhoid fever, are a significant threat to human health. Recent studies indicate that the function of a type III secretion system encoded by Salmonella Pathogenicity Island 2 (SPI2) is central for the ability of S. enterica to cause systemic infections and for intracellular pathogenesis. This review summarizes approaches leading to the identification of SPI2, the molecular genetics and evolution of SPI2, and the current understanding of the regulation of gene expression. Recent studies have indicated that SPI2 is used by intracellular Salmonella to actively modify functions of the host cells. The role of SPI2 during pathogenesis of salmonellosis and current models regarding function will be discussed.
                Bookmark

                Author and article information

                Journal
                BMC Immunol
                BMC Immunol
                BMC Immunology
                BioMed Central
                1471-2172
                2012
                26 September 2012
                : 13
                : 54
                Affiliations
                [1 ]Department of Biochemistry, the University of Hong Kong, Pokfulam, Hong Kong
                [2 ]Department of Microbiology, the University of Hong Kong, Pokfulam, Hong Kong
                [3 ]Oral Biosciences, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, 34 Hospital Road, Sai Ying, Hong Kong
                Article
                1471-2172-13-54
                10.1186/1471-2172-13-54
                3503649
                23013063
                256253b3-ba7d-4442-a402-d42438e08a1c
                Copyright ©2012 Zheng et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 12 March 2012
                : 4 September 2012
                Categories
                Research Article

                Immunology
                construction strategies,live oral vaccine,soluble and insoluble antigens,salmonella typhimurium,immunological comparison

                Comments

                Comment on this article