3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An Altered DNA Methylation Status in the Human Umbilical Cord Is Correlated with Maternal Exposure to Polychlorinated Biphenyls

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Maternal exposure to polychlorinated biphenyls (PCBs) results in abnormal fetal development, possibly because of epigenetic alterations. However, the association between PCB levels in cord serum with fetal DNA methylation status in cord tissue is unclear. This study aims to identify alterations in DNA methylation in cord tissue potentially associated with PCB levels in cord serum from a birth cohort in Chiba, Japan (male neonates = 32, female neonates = 43). Methylation array analysis identified five sites for female neonates (cg09878117, cg06154002, cg06289566, cg12838902, cg01083397) and one site for male neonates (cg13368805) that demonstrated a change in the methylation degree. This result was validated by pyrosequencing analysis, showing that cg06154002 ( tudor domain containing 9: TDRD9) in cord tissue from female neonates is significantly correlated with total PCB levels in cord serum. These results indicate that exposure to PCBs may alter TDRD9 methylation levels, although this hypothesis requires further validation using data obtained from female neonates. However, since the present cohort is small, further studies with larger cohorts are required to obtain more data on the effects of PCB exposure and to identify corresponding biomarkers.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2.

          Rett syndrome (RTT, MIM 312750) is a progressive neurodevelopmental disorder and one of the most common causes of mental retardation in females, with an incidence of 1 in 10,000-15,000 (ref. 2). Patients with classic RTT appear to develop normally until 6-18 months of age, then gradually lose speech and purposeful hand use, and develop microcephaly, seizures, autism, ataxia, intermittent hyperventilation and stereotypic hand movements. After initial regression, the condition stabilizes and patients usually survive into adulthood. As RTT occurs almost exclusively in females, it has been proposed that RTT is caused by an X-linked dominant mutation with lethality in hemizygous males. Previous exclusion mapping studies using RTT families mapped the locus to Xq28 (refs 6,9,10,11). Using a systematic gene screening approach, we have identified mutations in the gene (MECP2 ) encoding X-linked methyl-CpG-binding protein 2 (MeCP2) as the cause of some cases of RTT. MeCP2 selectively binds CpG dinucleotides in the mammalian genome and mediates transcriptional repression through interaction with histone deacetylase and the corepressor SIN3A (refs 12,13). In 5 of 21 sporadic patients, we found 3 de novo missense mutations in the region encoding the highly conserved methyl-binding domain (MBD) as well as a de novo frameshift and a de novo nonsense mutation, both of which disrupt the transcription repression domain (TRD). In two affected half-sisters of a RTT family, we found segregation of an additional missense mutation not detected in their obligate carrier mother. This suggests that the mother is a germline mosaic for this mutation. Our study reports the first disease-causing mutations in RTT and points to abnormal epigenetic regulation as the mechanism underlying the pathogenesis of RTT.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tobacco-smoking-related differential DNA methylation: 27K discovery and replication.

            Tobacco smoking is responsible for substantial morbidity and mortality worldwide, in particular through cardiovascular, pulmonary, and malignant pathology. CpG methylation might plausibly play a role in a variety of smoking-related phenomena, as suggested by candidate gene promoter or global methylation studies. Arrays allowing hypothesis-free searches on a scale resembling genome-wide studies of SNPs have become available only very recently. Methylation extents in peripheral-blood DNA were assessed at 27,578 sites in more than 14,000 gene promoter regions in 177 current smokers, former smokers, and those who had never smoked, with the use of the Illumina HumanMethylation 27K BeadChip. This revealed a single locus, cg03636183, located in F2RL3, with genome-wide significance for lower methylation in smokers (p = 2.68 × 10(-31)). This was similarly significant in 316 independent replication samples analyzed by mass spectrometry and Sequenom EpiTyper (p = 6.33 × 10(-34)). Our results, which were based on a rigorous replication approach, show that the gene coding for a potential drug target of cardiovascular importance features altered methylation patterns in smokers. To date, this gene had not attracted attention in the literature on smoking. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status.

              A complex combination of adult health-related disorders can originate from developmental events that occur in utero. The periconceptional period may also be programmable. We report on the effects of restricting the supply of specific B vitamins (i.e., B(12) and folate) and methionine, within normal physiological ranges, from the periconceptional diet of mature female sheep. We hypothesized this would lead to epigenetic modifications to DNA methylation in the preovulatory oocyte and/or preimplantation embryo, with long-term health implications for offspring. DNA methylation is a key epigenetic contributor to maintenance of gene silencing that relies on a dietary supply of methyl groups. We observed no effects on pregnancy establishment or birth weight, but this modest early dietary intervention led to adult offspring that were both heavier and fatter, elicited altered immune responses to antigenic challenge, were insulin-resistant, and had elevated blood pressure-effects that were most obvious in males. The altered methylation status of 4% of 1,400 CpG islands examined by restriction landmark genome scanning in the fetal liver revealed compelling evidence of a widespread epigenetic mechanism associated with this nutritionally programmed effect. Intriguingly, more than half of the affected loci were specific to males. The data provide the first evidence that clinically relevant reductions in specific dietary inputs to the methionine/folate cycles during the periconceptional period can lead to widespread epigenetic alterations to DNA methylation in offspring, and modify adult health-related phenotypes.
                Bookmark

                Author and article information

                Journal
                Int J Environ Res Public Health
                Int J Environ Res Public Health
                ijerph
                International Journal of Environmental Research and Public Health
                MDPI
                1661-7827
                1660-4601
                04 August 2019
                August 2019
                : 16
                : 15
                : 2786
                Affiliations
                [1 ]Center for Preventive Medical Sciences, Chiba University, Inage-ku Yayoi-cho 1-33, Chiba 263-8522, Japan
                [2 ]Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chuo-ku Inohana 1-8-1, Chiba 263-8522, Japan
                [3 ]Teijin Limited, Kasumigaseki Common Gate West Tower, 2-1, Kasumigaseki 3-chome, Chiyoda-ku, Tokyo 100-0013, Japan
                [4 ]Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chuo-ku Inohana 1-8-1, Chiba 263-8522, Japan
                [5 ]Department of Anatomy, Tokyo Medical University, Shinjuku-ku Shinjuku 6-1-1, Tokyo 160-8402, Japan
                Author notes
                [* ]Correspondence: cmori@ 123456faculty.chiba-u.jp ; Tel.: +81-43-226-2017
                Author information
                https://orcid.org/0000-0001-5858-8132
                Article
                ijerph-16-02786
                10.3390/ijerph16152786
                6696183
                31382687
                2576b286-5dc4-4ad7-b238-b5a31b6b3af9
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 12 July 2019
                : 02 August 2019
                Categories
                Article

                Public health
                polychlorinated biphenyl,birth cohort,dna methylation
                Public health
                polychlorinated biphenyl, birth cohort, dna methylation

                Comments

                Comment on this article