24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bioluminescence and Photoreception in Unicellular Organisms: Light-Signalling in a Bio-Communication Perspective

      , , ,
      International Journal of Molecular Sciences
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bioluminescence, the emission of light catalysed by luciferases, has evolved in many taxa from bacteria to vertebrates and is predominant in the marine environment. It is now well established that in animals possessing a nervous system capable of integrating light stimuli, bioluminescence triggers various behavioural responses and plays a role in intra- or interspecific visual communication. The function of light emission in unicellular organisms is less clear and it is currently thought that it has evolved in an ecological framework, to be perceived by visual animals. For example, while it is thought that bioluminescence allows bacteria to be ingested by zooplankton or fish, providing them with favourable conditions for growth and dispersal, the luminous flashes emitted by dinoflagellates may have evolved as an anti-predation system against copepods. In this short review, we re-examine this paradigm in light of recent findings in microorganism photoreception, signal integration and complex behaviours. Numerous studies show that on the one hand, bacteria and protists, whether autotrophs or heterotrophs, possess a variety of photoreceptors capable of perceiving and integrating light stimuli of different wavelengths. Single-cell light-perception produces responses ranging from phototaxis to more complex behaviours. On the other hand, there is growing evidence that unicellular prokaryotes and eukaryotes can perform complex tasks ranging from habituation and decision-making to associative learning, despite lacking a nervous system. Here, we focus our analysis on two taxa, bacteria and dinoflagellates, whose bioluminescence is well studied. We propose the hypothesis that similar to visual animals, the interplay between light-emission and reception could play multiple roles in intra- and interspecific communication and participate in complex behaviour in the unicellular world.

          Related collections

          Most cited references437

          • Record: found
          • Abstract: found
          • Article: not found

          Cell signaling by receptor tyrosine kinases.

          Recent structural studies of receptor tyrosine kinases (RTKs) have revealed unexpected diversity in the mechanisms of their activation by growth factor ligands. Strategies for inducing dimerization by ligand binding are surprisingly diverse, as are mechanisms that couple this event to activation of the intracellular tyrosine kinase domains. As our understanding of these details becomes increasingly sophisticated, it provides an important context for therapeutically countering the effects of pathogenic RTK mutations in cancer and other diseases. Much remains to be learned, however, about the complex signaling networks downstream from RTKs and how alterations in these networks are translated into cellular responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Crystal structure of rhodopsin: A G protein-coupled receptor.

            Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) respond to a variety of different external stimuli and activate G proteins. GPCRs share many structural features, including a bundle of seven transmembrane alpha helices connected by six loops of varying lengths. We determined the structure of rhodopsin from diffraction data extending to 2.8 angstroms resolution. The highly organized structure in the extracellular region, including a conserved disulfide bridge, forms a basis for the arrangement of the seven-helix transmembrane motif. The ground-state chromophore, 11-cis-retinal, holds the transmembrane region of the protein in the inactive conformation. Interactions of the chromophore with a cluster of key residues determine the wavelength of the maximum absorption. Changes in these interactions among rhodopsins facilitate color discrimination. Identification of a set of residues that mediate interactions between the transmembrane helices and the cytoplasmic surface, where G-protein activation occurs, also suggests a possible structural change upon photoactivation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bacterial quorum sensing in complex and dynamically changing environments

              Quorum sensing is a process of bacterial cell-to-cell chemical communication that relies on the production, detection and response to extracellular signalling molecules called autoinducers. Quorum sensing allows groups of bacteria to synchronously alter behaviour in response to changes in the population density and species composition of the vicinal community. Quorum-sensing-mediated communication is now understood to be the norm in the bacterial world. Elegant research has defined quorum-sensing components and their interactions, for the most part, under ideal and highly controlled conditions. Indeed, these seminal studies laid the foundations for the field. In this Review, we highlight new findings concerning how bacteria deploy quorum sensing in realistic scenarios that mimic nature. We focus on how quorums are detected and how quorum sensing controls group behaviours in complex and dynamically changing environments such as multi-species bacterial communities, in the presence of flow, in 3D non-uniform biofilms and in hosts during infection.
                Bookmark

                Author and article information

                Contributors
                Journal
                IJMCFK
                International Journal of Molecular Sciences
                IJMS
                MDPI AG
                1422-0067
                November 2021
                October 20 2021
                : 22
                : 21
                : 11311
                Article
                10.3390/ijms222111311
                34768741
                2576f981-905a-4015-a0f2-3bcf8fe09734
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article