30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reorganizing the Intrinsic Functional Architecture of the Human Primary Motor Cortex during Rest with Non-Invasive Cortical Stimulation

      research-article
      * , ,
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The primary motor cortex (M1) is the main effector structure implicated in the generation of voluntary movements and is directly involved in motor learning. The intrinsic horizontal neuronal connections of M1 exhibit short-term and long-term plasticity, which is a strong substrate for learning-related map reorganization. Transcranial direct current stimulation (tDCS) applied for few minutes over M1 has been shown to induce relatively long-lasting plastic alterations and to modulate motor performance. Here we test the hypothesis that the relatively long-lasting synaptic modification induced by tDCS over M1 results in the alteration of associations among populations of M1 neurons which may be reflected in changes of its functional architecture. fMRI resting-state datasets were acquired immediately before and after 10 minutes of tDCS during rest, with the anode/cathode placed over the left M1. For each functional dataset, grey-matter voxels belonging to Brodmann area 4 (BA4) were labelled and afterwards BA4 voxel-based synchronization matrices were calculated and thresholded to construct undirected graphs. Nodal network parameters which characterize the architecture of functional networks (connectivity degree, clustering coefficient and characteristic path-length) were computed, transformed to volume maps and compared before and after stimulation. At the dorsolateral-BA4 region cathodal tDCS boosted local connectedness, while anodal-tDCS enhanced long distance functional communication within M1. Additionally, the more efficient the functional architecture of M1 was at baseline, the more efficient the tDCS-induced functional modulations were. In summary, we show here that it is possible to non-invasively reorganize the intrinsic functional architecture of M1, and to image such alterations.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation.

          In this paper we demonstrate in the intact human the possibility of a non-invasive modulation of motor cortex excitability by the application of weak direct current through the scalp. Excitability changes of up to 40 %, revealed by transcranial magnetic stimulation, were accomplished and lasted for several minutes after the end of current stimulation. Excitation could be achieved selectively by anodal stimulation, and inhibition by cathodal stimulation. By varying the current intensity and duration, the strength and duration of the after-effects could be controlled. The effects were probably induced by modification of membrane polarisation. Functional alterations related to post-tetanic potentiation, short-term potentiation and processes similar to postexcitatory central inhibition are the likely candidates for the excitability changes after the end of stimulation. Transcranial electrical stimulation using weak current may thus be a promising tool to modulate cerebral excitability in a non-invasive, painless, reversible, selective and focal way.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The small world of the cerebral cortex.

            While much information is available on the structural connectivity of the cerebral cortex, especially in the primate, the main organizational principles of the connection patterns linking brain areas, columns and individual cells have remained elusive. We attempt to characterize a wide variety of cortical connectivity data sets using a specific set of graph theory methods. We measure global aspects of cortical graphs including the abundance of small structural motifs such as cycles, the degree of local clustering of connections and the average path length. We examine large-scale cortical connection matrices obtained from neuroanatomical data bases, as well as probabilistic connection matrices at the level of small cortical neuronal populations linked by intra-areal and inter-areal connections. All cortical connection matrices examined in this study exhibit "small-world" attributes, characterized by the presence of abundant clustering of connections combined with short average distances between neuronal elements. We discuss the significance of these universal organizational features of cortex in light of functional brain anatomy. Supplementary materials are at www.indiana.edu/~cortex/lab.htm.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI.

              Subtle changes in a subject's breathing rate or depth, which occur naturally during rest at low frequencies (<0.1 Hz), have been shown to be significantly correlated with fMRI signal changes throughout gray matter and near large vessels. The goal of this study was to investigate the impact of these low-frequency respiration variations on both task activation fMRI studies and resting-state functional connectivity analysis. Unlike MR signal changes correlated with the breathing motion ( approximately 0.3 Hz), BOLD signal changes correlated with across-breath variations in respiratory volume ( approximately 0.03 Hz) appear localized to blood vessels and regions with high blood volume, such as gray matter, similar to changes seen in response to a breath-hold challenge. In addition, the respiration-variation-induced signal changes were found to coincide with many of the areas identified as part of the 'default mode' network, a set of brain regions hypothesized to be more active at rest. Regions could therefore be classified as being part of a resting network based on their similar respiration-induced changes rather than their synchronized neuronal activity. Monitoring and removing these respiration variations led to a significant improvement in the identification of task-related activation and deactivation and only slight differences in regions correlated with the posterior cingulate at rest. Regressing out global signal changes or cueing the subject to breathe at a constant rate and depth resulted in an improved spatial overlap between deactivations and resting-state correlations among areas that showed deactivation.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                27 January 2012
                : 7
                : 1
                : e30971
                Affiliations
                [1]Department of Clinical Neurophysiology, Georg-August University of Göttingen, Göttingen, Germany
                City of Hope National Medical Center and Beckman Research Institute, United States of America
                Author notes

                Conceived and designed the experiments: RP WP MAN. Performed the experiments: RP. Analyzed the data: RP. Contributed reagents/materials/analysis tools: RP. Wrote the paper: RP WP MAN.

                Article
                PONE-D-11-15028
                10.1371/journal.pone.0030971
                3267735
                22303478
                25783f6c-1d04-41fa-961c-beba2dc9b88d
                Polanía et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 3 August 2011
                : 30 December 2011
                Page count
                Pages: 10
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Neurological System
                Neuroscience
                Neuroimaging
                Medicine
                Anatomy and Physiology
                Neurological System
                Neurology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article